SIMMER-Ⅲ及びSIMMER-Ⅳによる
FCAⅧ-2燃料スランピング実験解析
Analysis of FCA VIII-2 Fuel Slumping Experiments
by SIMMER-Ⅲ and SIMMER-Ⅳ

石田 真也 水野 正弘
Shinya ISHIDA and Masahiro MIZUNO

高速炉研究開発部門
次世代高速炉サイクル研究開発センター
高速炉安全技術開発部
Fast Reactor Safety Technology Development Department
Advanced Fast Reactor Cycle System Research and Development Center
Sector of Fast Reactor Research and Development

June 2015
Japan Atomic Energy Agency
This report is issued irregularly by Japan Atomic Energy Agency.
Inquiries about availability and/or copyright of this report should be addressed to
Institutional Repository Section,
Intellectual Resources Management and R&D Collaboration Department,
Japan Atomic Energy Agency.
2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2015
SIMMER-III 及び SIMMER-IV による FCA VIII-2 燃料スランピング実験解析

日本原子力研究開発機構 高速炉研究開発部門
次世代高速炉サイクル研究開発センター 高速炉安全技術開発部
石田 真也、水野 正弘*1

(2015年2月18日 受理)

核心損傷事故（CDA：Core Disruptive Accidents）の事象推移の評価を核的な観点から考えると、核物質配位の大規模な変化に伴う反応度の変動を精度良く評価することは非常に重要である。日本原子力研究開発機構（JAEA：Japan Atomic Energy Agency）では高速炉のCDAの事象推移で生じる複雑な物理現象を総合的にシミュレーションするために、高速炉の核熱流動安全解析コード SIMMER-III 及び SIMMER-IV の開発を進めている。本研究では SIMMER-III 及び SIMMER-IVにおける損傷核心の核的挙動について検証を行うことを目的として、日本原子力研究所の高速臨界集合体施設（FCA：Fast Critical Assembly）で1979年に実施されたFCA VIII-2臨界集合体での燃料スランピング実験の解析を実施した。ここで燃料スランピングとは熱的あるいは機械的原因で燃料の崩落等により核物質が密に詰まる現象を指す。実験では、炉心上側の物質が炉心下側に落下して密に詰まる非対称パターンと、炉心中心部に発生した圧力等により炉心上下方向に分散して密に詰まる対称パターンについて反応度や反応率分布等の測定を行っている。

SIMMER-III による 2 次元 RZ 体系での解析と SIMMER-IV による 3 次元 XYZ 体系での解析（基本炉定数として高速炉用統合炉定数 ADJ2000R を用い、中性子のエネルギー群は 70 群、非等方散乱の取り扱いは多群輸送近似、角度方向の離散化係数は S8 として解析を実施）では、反応度変化に関する計算値と実験値の比（C/E値）が非対称パターンで 0.91〜1.01、対称パターン 0.93 及び 0.98 と十分な精度で実験を模擬できており、輸送理論に基づく汎用解析コードである PARTISN、SNPERT、SNPERT-3D による解析の結果ともほぼ一致していることから、SIMMER-III 及び SIMMER-IV は信頼性の高い解析コードであることが確認できた。また、エネルギー群縮約と角度方向の離散化係数に関する合理化的検討を行ったところ、SIMMER-III 及び SIMMER-IV による FCA VIII-2 燃料スランピング実験解析を実施する際には、エネルギー群縮約を 18 群程度、角度方向の離散化係数を S4 にまで合理化することが可能であることも分かった。
Analysis of FCA VIII-2 Fuel Slumping Experiments by SIMMER-III and SIMMER-IV

Shinya ISHIDA and Masahiro MIZUNO

Fast Reactor Safety Technology Development Department
Advanced Fast Reactor Cycle System Research and Development Center
Sector of Fast Reactor Research and Development
Japan Atomic Energy Agency
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received February 18, 2015)

In the core disruptive accidents analysis, it is important to evaluate accurately the reactivity behavior caused by the massive change of core material distribution. An advanced safety analysis computer code, SIMMER-III and SIMMER-IV, has been developed in Japan Atomic Energy Agency (JAEA) to investigate the complex phenomena under the core disruptive accidents in liquid-metal fast reactors. Fuel slumping experiments performed in the Fast Critical Assembly (FCA) VIII-2 facility at JAEA in 1979 were analyzed by SIMMER-III (two dimensions) and SIMMER-IV (three dimensions) in order to validate the neutronics model of the code for the disrupted core analysis. These experiments included two fuel relocation patterns; the asymmetrical pattern assumes that core materials above the core mid-plane would fall below it and the symmetrical pattern assumes that core materials around the core mid-plane disperse vertically.

The C/E (Calculation / Experiment) values of the SIMMER-III and SIMMER-IV analysis (70-group constants from the unified cross-section set ADJ2000R, multi-group transport approximation for the anisotropic scattering, S_8 approximation for the discrete-ordinate order) were between 0.91 and 1.01 in the case of the asymmetrical pattern, and 0.93 and 0.98 in the case of the symmetrical pattern. The analytical results of the transport codes (PARTISN, SNPERT and SNPERT-3D) were almost agreed with those of SIMMER-III and SIMMER-IV. These agreements indicated that the SIMMER-III and SIMMER-IV simulated the FCA VIII-2 experiments with sufficient precision and the validity of the SIMMER-III and SIMMER-IV neutronics model is confirmed. In addition, the parameter surveys showed that the simulation of the FCA VIII-2 experiments with sufficient precision can be performed with the 18-group constants and S_4 approximation for the discrete-ordinate order.

Keywords: SIMMER-III, SIMMER-IV, Neutronics, FCA VIII-2, Fuel Slumping, Transport Calculation

*1 NESI Incorporation
目次

1. 緒言 ... 1

2. FCA VIII-2 スランピング実験の概要 ... 2
 2.1. FCA VIII-2 集合体の構成 ... 2
 2.2. 燃料移動パターンの構成 ... 2
 2.3. 実験方法及び結果 ... 3

3. SIMMER-III 及び SIMMER-IV による解析 .. 4
 3.1. SIMMER-III 及び SIMMER-IV の概要 .. 4
 3.2. FCA VIII-2 実験解析の概要 ... 4
 3.2.1. 基本炉定数 ... 4
 3.2.2. 解析体系 ... 4
 3.2.3. 原子数密度 ... 5
 3.2.4. 輸送計算 ... 5
 3.3. FCA VIII-2 実験解析の結果 ... 5
 3.3.1. SIMMER-III（2次元体系）による解析結果 .. 5
 3.3.2. SIMMER-IV（3次元体系）による解析結果 ... 6
 3.3.3. 2次元体系と3次元体系の比較 .. 6

4. 検討及び評価 ... 8
 4.1. SIMMER-II による解析結果との比較 .. 8
 4.1.1. 解析ケースの概要 ... 8
 4.1.2. 解析結果の比較と考察 ... 10
 4.2. 汎用解析コードとの比較 ... 11
 4.2.1. 汎用解析コードによる解析の概要 ... 11
 4.2.2. 解析結果の比較と考察 ... 12
 4.3. 検討結果 .. 13

5. 結論 ... 14

参考文献 ... 15
Contents

1. Introduction ... 1

2. Outline of FCA VIII-2 Fuel Slumping Experiments ... 2
 2.1. Configuration of FCA VIII-2 Assembly .. 2
 2.2. Fuel Relocation Patterns .. 2
 2.3. Experimental Methods and Results ... 3

3. Analysis of FCA VIII-2 Experiments with SIMMER-III and SIMMER-IV .. 4
 3.1. Outline of SIMMER-III and SIMMER-IV .. 4
 3.2. Analytical Condition ... 4
 3.2.1. Cross-section Set ... 4
 3.2.2. Analytical Model ... 4
 3.2.3. Atomic Number Density ... 5
 3.2.4. Transport Calculation ... 5

 3.3. Analytical Results ... 5
 3.3.1. Results of SIMMER-III (2-Dimensional Model) .. 5
 3.3.2. Results of SIMMER-IV (3-Dimensional Model) .. 6
 3.3.3. Comparison between 2D Model and 3D Model .. 6

4. Discussion and Evaluation ... 8
 4.1. Comparison with SIMMER-II Analysis .. 8
 4.1.1. Outline of Analytical Case ... 8
 4.1.2. Discussion .. 10
 4.2. Comparison with Universal Analysis Code .. 11
 4.2.1. Outline of Analytical Case ... 11
 4.2.2. Discussion .. 12

4.3. Results of Discussion and Evaluation .. 13

5. Conclusions ... 14

References ... 15
図表リスト

表リスト

Table 2-1 体系を構成する物質の平均原子数密度 .. 17
Table 2-2 基準体系からの反応度変化及び測定誤差 .. 17
Table 3-1 SIMMER-III 及び SIMMER-IV の解析モデルの燃料スランピング領域の物質対応表... 22
Table 3-2 反応度変化の実験結果と解析結果の比較 .. 23
Table 3-3 実効増倍率の実験結果と解析結果の比較 .. 23
Table 4-1 中性子エネルギー群構造 .. 30
Table 4-2 解析ケース一覧 .. 31
Table 4-3 反応度変化の解析結果の比較 (SIMMER-II との比較) 32
Table 4-4 実効増倍率の解析結果の比較 (SIMMER-II との比較) 33
Table 4-5 反応度変化の解析結果の比較 (汎用コードとの比較) 34
Table 4-6 実効増倍率の解析結果の比較 (汎用コードとの比較) 34

図リスト

Fig. 2-1 実験体系の炉心断面図（XY 平面） .. 18
Fig. 2-2 実験体系の炉心断面図（RZ 体系） .. 19
Fig. 2-3 燃料スランピング領域の燃料移動パターン ... 20
Fig. 2-4 核分裂反応率軸方向分布の測定結果 ... 21
Fig. 3-1 SIMMER コードの全体構成 .. 24
Fig. 3-2 SIMMER-III による解析モデル（2 次元 RZ 体系） 25
Fig. 3-3 SIMMER-IV による解析モデル（3 次元 XYZ 体系、XY 平面） 26
Fig. 3-4 SIMMER-IV による解析モデル（3 次元 XYZ 体系、RZ 平面） 27
Fig. 3-5 炉心中心位置での 238U と 235U の核分裂反応率分布（実験結果と SIMMER-III 解析結果） ... 28
Fig. 3-6 炉心中心位置での 238U と 235U の核分裂反応率分布（実験結果と SIMMER-IV 解析結果） ... 29
Fig. 4-1 解析ケース S2-9Gr の 2 次元 RZ 体系解析モデル 35
Fig. 4-2 炉心中心位置での 238U と 235U の核分裂反応率分布（角度方向の離散化次数 S8 及び S4） ... 36
Fig. 4-3 炉心中心位置での238Uと235Uの核分裂反応率分布（エネルギー群縮約70群及び18群） .. 37

Fig. 4-4 炉心中心位置での238Uと235Uの核分裂反応率分布（エネルギー群縮約70群及び9群） .. 38

Fig. 4-5 炉心中心位置での238Uと235Uの核分裂反応率分布（角度方向の離散化次数の差と体系の違い） .. 39

Fig. 4-6 汎用解析コードにおける解析フロー図 .. 40

Fig. 4-7 炉心中心位置での238Uと235Uの核分裂反応率分布（SIMMER-III解析結果と汎用解析コード：輸送理論） .. 41

Fig. 4-8 炉心中心位置での238Uと235Uの核分裂反応率分布（SIMMER-IV解析結果と汎用解析コード：輸送理論） .. 42

Fig. 4-9 炉心中心位置での238Uと235Uの核分裂反応率分布（SIMMER-III解析結果と汎用解析コード：拡散理論） .. 43

Fig. 4-10 炉心中心位置での238Uと235Uの核分裂反応率分布（SIMMER-IV解析結果と汎用解析コード：拡散理論） .. 44

Fig. 4-11 厳密摂動計算における反応度変化の内訳 .. 45

Fig. 4-12 各解析ケースの反応度変化の比較（左図：3次元体系、右図：2次元体系） .. 46

Fig. 4-13 各解析ケースの反応度変化の比較（角度方向の離散化次数及びエネルギー群数） .. 47
1. 緒言

高速炉の安全性を考える上で、炉心損傷事故（CDA: Core Disruptive Accidents）における再臨界の可能性について検討を行うことは非常に重要である。そして、この高速炉の CDA の事象推移を評価する際には、大規模な炉心物質の移動や再配置に伴う核的挙動の変化を適切に評価することが必要である。加えて、解析では複雑な熱流動挙動と核的挙動を同時に扱うこととなるため、解析コード上では熱流体モデルと核的モデルのカップリングが必要である。これらの要求に応えるため、日本原子力研究開発機構（JAEA: Japan Atomic Energy Agency）は核熱流動安全解析コード SIMMER の開発・整備を進めており、計算負荷が少ない 2 次元版（SIMMER-III）1）、及び損傷炉心物質の空間配位をより正確に扱える 3 次元版（SIMMER-IV）2）が実機 CDA 評価に適用可能な段階となっている。

CDA の事象推移の評価を核的な観点から考えると、解析では炉心物質配位の大規模な変化に伴う反応度の変動を精度良く評価することが重要である。よって、本研究では SIMMER-III 及び SIMMER-IV における損傷炉心の核的挙動について検証を行うことを目的とし、検証には日本原子力研究所の高速臨界集合体施設（FCA: Fast Critical Assembly）で 1979 年に実施された FCA VIII-2 臨界集合体での燃料スランピング実験を用いることとする。
2. FCA VIII-2 スランピング実験の概要

高速炉の炉心溶融時の反応度効果に関する基礎的研究として、高速炉の炉心溶解を模擬した一連の臨界実験が、FCA VIII-2 集合体により実施されている

本章では、SIMMER-III 及び SIMMER-IV の検証に用いる FCA VIII-2 実験の概要を記す。

2.1. FCA VIII-2 集合体の構成

実験体系の炉心断面図を Fig. 2-1 及び Fig. 2-2 に示す。FCA VIII-2 集合体はプレート型の燃料及び構造材を層状に“引き出し”と呼ばれる単位セルに積み重ねて構成されている。中心部に高速増殖原型炉「もんじゅ」の内側炉心を模擬した試験領域 (Test region) を持ち、その外側を 235U 濃縮燃料のドライバー領域 (Driver) で囲んでいる。試験領域の上部と下部には軸プランケットが配置され、ドライバー領域の上部と下部には天然ウランブロックが配置されている。また、径プランケットには劣化ウランブロックが用いられている。安全棒／制御棒 (SCR: Safety／Control rod) は計 8 本あり、ドライバー領域の内側に配置されている。この安全棒／制御棒は通常のドライバー燃料と異なり、反応度補償のためにドライバー燃料の約 1.4 倍の 235U 濃縮燃料を用いている。

2.2. 燃料移動パターンの構成

実験では試験領域の中心に位置している、3×3 の引き出し (以下、燃料スランピング領域) において軸方向の燃料移動が行われた。ここで燃料スランピングとは燃料の崩落等により炉心物質が密に詰まる現象を指しており、本実験で取り上げた燃料スランピング領域の燃料移動パターンは Fig. 2-3 に示す通りである。燃料移動の基準となる A0 ケースは、燃料スランピング領域の炉心部、上部軸プランケット部及び下部軸プランケット部のナトリウム板が除去され、代わりにスペーサが装填されており、ナトリウムがボイド化した状況を模擬している。

燃料移動パターンは、炉心軸方向中心位置の断面 (以下、中心面) に対し、非対称パターン (A1, A2, A3 ケース) と対称パターン (S ケース) に分けられ、燃料移動は炉心部を高さ方向に 6 等分した“小領域”を単位として行われた。

非対称パターンは炉心下部の溶融により上部の炉心物質が落下することで落下先の炉心物質の密度が増加するといった現象に対応している。実験体系としては、中心面の上部にある小領域の燃料物質が下部の小領域に移動した体系で、燃料の移動先の小領域と移動先の小領域が中心面に対して対称となるように移動させている。これにより、燃料移動先の小領域では通常の 2 倍の燃料を持つ高密度燃料領域になり、燃料移動元の小領域では逆にスペーサのみから成るボイド領域になる。非対称パターンでは、燃料移動領域を中心面から炉心上下端まで順次広げた 3 種のケース A1, A2 及び A3 を選び、各段階で A0 からの反応度変化を測定した。

対称パターンの S ケースは炉心中心部に発生した圧力等により炉心中心部の炉心物質が炉心上下方向へ分散することで分散先の炉心物質の密度が増加するといった現象に対応している。実験体系としては、炉心軸中央 1/3 領域の燃料物質が上下対称に移動した体系であり、上下轴プラン
 Kettenに接する小領域の燃料は元のままである。

体系を構成する物質の平均原子数密度は Table 2-1 に示す通りである。ただし、同表の 241Pu の原子数密度は実験の行われた 1979 年 6 月の値に補正されており、241Am は無視されている。

2.3. 実験方法及び結果

Table 2-2 に測定された基準体系からの反応度変化及び測定誤差を示す。これらの反応度変化は、基準体系（A0 ケース）及び各燃料移動パターン（A1、A2、A3、S ケース）について、余剰反応度を臨界時の制御棒位置から測定し、その差から導出されたものである。なお、測定時には温度補正が施されている。

基準体系（A0 ケース）について、安全棒／制御棒を完全挿入した状態の実効増倍率（k_{eff}）は平均温度 23℃に対し以下の通りである。

$$k_{eff} = 1.0032 \pm 0.0003$$

この値には、温度効果及び 1/2 集合体間隙効果が施されている。

実験では基準体系（A0 ケース）及び各燃料移動パターン（A1、A2、A3、S ケース）について、炉中心軸の 238U と 235U の核分裂反応率分布を測定している。Fig. 2-4 には測定値の内、主要な値を示す。測定には外径約 6mm の小型核分裂計数管を使用している。ここで 238U の核分裂反応率分布は 1MeV 以上の高エネルギー中性子束分布を、235U の核分裂反応率分布は全中性子束分布をそれぞれ代表している。
3. SIMMER-III 及び SIMMER-IV による解析

本章では、初めに SIMMER-III 及び SIMMER-IV の概要について簡単に説明し、次に SIMMER-III 及び SIMMER-IV を用いて実施した FCA VIII-2 スランピング実験の解析の概要、結果について記す。

3.1. SIMMER-III 及び SIMMER-IV の概要

高速炉の核熱流動安全解析コード SIMMER-III 及び SIMMER-IV は Fig. 3-1 にあるように、流体力学モジュール、構造材計算モジュール、核動特性モジュールの 3 要素から構成されており、高速炉の CDA の事象推移で生じる複雑な物理現象を総合的にシミュレーションできるように設計されている。SIMMER-III は 2 次元体系、SIMMER-IV は 3 次元体系での解析に対応している。この内、核動特性モジュールは中性子輸送理論による空間依存動特性モデルを採用しており、主に断面積計算部、中性子束の形状関数計算部、断面積計算部の 3 要素からなっている。

CDA の事象推移の評価を行う際には炉内物質の核種数密度や温度が時刻とともに変化するため、一般的な動特性解析コードとは異なり SIMMER コードには断面積を取扱うルーチンが組み込まれている。このルーチンでは核種数密度や炉心物質の温度分布の時間推移を考慮に入れられた実効断面積を作成する。中性子束分布や反応度の計算には多群中性子輸送方程式の改良型準静近似を用い、中性子束分布を形状関数と振幅関数に変数分離して解いている。ここで形状関数は主に中性子束のエネルギー・空間依存性を表している時間変化に緩慢な関数であり、振幅関数は主に時間依存性をより詳細に表す関数である。形状関数の計算部では拡散合成法を用いた S_n 法を使用している DANTSYS を基に開発されたルーチンが組み込まれている。

3.2. FCA VIII-2 実験解析の概要

3.2.1. 基本炉定数

本解析では基本炉定数として高速炉用統合炉定数 ADJ2000R を用いた。ADJ2000R は、評価済み核データ JENDL-3.2 を基に作成された ABBN 型 70 群高速炉用群定数セット JFS-3-J3.2R をベースとして、解析精度の向上のために各種臨界実験解析等の積分データと確率・統計理論を用いた炉定数調整法により作成された群定数セットである。

3.2.2. 解析体系

SIMMER-III 及び SIMMER-IV による解析モデルを Fig. 3-2、Fig. 3-3 及び Fig. 3-4 に示す。ここでは、燃料スランピング領域の物質は燃料移動パターンに応じて Table 3-1 に示すように設定する。2 次元 RZ 解析モデル及び 3 次元 XYZ 解析モデルについては、FCA VIII-2 集合体の中心部の 31 ×31 引出しの範囲をモデル化した。また、上部軸ブランケットの上部及び下部軸ブランケットの
下部には高さ20cmの遮蔽体を設置した。

2次元体系における徑（R）方向のメッシュセル分割については、各領域の体積を保存するように2次元円筒体系化し、幅約3.2cmのメッシュセルを核計算メッシュセルに設定した。ここで、安全棒／制御棒領域については、8引出し分の体積を保存するように円筒化し、ドライバー領域の内側に配置している。

3次元体系における水平方向（X, Y）のメッシュ分割については、1引出しを均等2メッシュ分割とした幅約2.5cmを核計算メッシュセルとする。ただし、遮蔽体のみの引出しに関しては1引出し1メッシュとした。

試験領域の垂直方向（Z）のメッシュ分割については、均等6分割した各領域（2.2節において述べた実験体系での小領域に対応）をそれぞれ1つの流体力学メッシュセルに設定し、そこに燃料スランピング領域の燃料移動パターン（A0〜A3、Sケース）に応じた物質を配置する。核計算メッシュセルは実験体系での小領域を均等6分割した高さ約2.5cmに設定する。

3.2.3. 原子数密度

FCA VIII-2実験は、零出力臨界実験であるため、全ての物質の温度を常温（23℃）で一定に設定する。核物質の原子数密度はTable 2-1に示した平均原子数密度を基にし、Fig. 3-2、Fig. 3-3及びFig. 3-4の対応領域に均一に分布させる。

3.2.4. 輸送計算

SIMMER-III及びSIMMER-IVの核計算では多群中性子輸送方程式を用いており、本解析ではエネルギー群数の縮約は行わず70群で解析を行った。以下に、輸送計算で選択したオプションを示す。

- 非等方散乱の取り扱い：多群輸送近似9）（以下、P0/1）
- 角度方向の離散化次数：S8
- S8法に対する加速法：拡散合成法10）
- 負の中性子束の処理法：Set-to-Zero-and-Correct法

3.3. FCA VIII-2実験解析の結果

SIMMER-III及びSIMMER-IVによるFCA VIII-2スランピング実験の解析の結果を、反応度変化、実効増倍率、中性子束分布について示す。

3.3.1. SIMMER-III（2次元体系）による解析結果

実験及び解析における反応度変化をTable 3-2に示す。表に示した通り、非対称パターンでは燃
料スランピング領域の燃料移動領域がA1、A2、A3ケースと拡大するにつれて、解析結果と実験結果との差が広がっているものの、C/E値（解析値と実験値の比）でみると0.91～1.00であることから、解析結果と実験結果は良い一致を示しているといえる。FCA VIII-2集合体はプレート型の燃料や構造材を出しに積み重ねて装荷しているが、解析では各領域を均質化していることから非均質効果による差が生じ得る。過去の検討における非均質効果による不確定性は10%程度であることもからも、十分な精度で解析が行われたと考えられる。また、対称パターン（Sケース）についても、C/E値が0.93であることから、こちらも解析結果と実験結果がほぼ一致しているといえる。

また、実効増倍率に関してはTable 3-3に示す通り、妥当な結果が得られている。

炉心中心位置での238Uと235Uの核分裂反応率軸方向分布をFig. 3-5に示す。実験結果と比較すると、238Uの解析結果がポイド領域で過大評価している部分もあるが、概ね一致した分布になっている。ここで、核分裂反応の算出に用いた238Uと235Uの生成実効ミクロ断面積には無限希釈生成断面積（=核分裂当り中性子発生数×核分裂反応無限希釈断面積）を適用し、核分裂反応率軸方向分布はA0ケースの最大値が1.0になるように格規化を施した。

3.3.2. SIMMER-IV（3次元体系）による解析結果

実験及び解析における反応度変化をTable 3-2に示す。傾向は2次元体系での解析結果と同様、非対称パターンでは燃料スランピング領域の燃料移動領域がA1、A2、A3ケースと拡大するにつれて、解析結果と実験結果との差が広がっているものの、C/E値でみると0.93～1.01であることから、解析結果と実験結果は良い一致を示しているといえる。対称パターン（Sケース）についても、C/E値が0.98であることから、こちらも解析結果と実験結果が良い一致を示しているといえる。

また、実効増倍率に関してはTable 3-3に示す通り、妥当な結果が得られている。

炉心中心位置での238Uと235Uの核分裂反応率軸方向分布をFig. 3-6に示す。実験結果と比較すると、238Uの解析結果がポイド領域で過大評価している部分もあるが、概ね一致した分布になっている。

3.3.3. 2次元体系と3次元体系の比較

FCA VIII-2集合体は直方体の引き出しから成る集合体で、3次元XYZ体系の解析では安全棒／制御棒の配置等を詳細に模擬することが可能である。一方、2次元RZ体系の解析では全ての領域を円筒化する必要があるため、領域の表面積の大きさに起因した中性子漏洩の違い、安全棒／制御棒の3次元配置を2次元リング化して配置することで発生するモデル化誤差などが解析結果に影響を与えるものと考えられる。

解析結果に関しては、実効増倍率を比較すると3次元体系であるSIMMER-IVは1.0030であるのに対し、2次元体系であるSIMMER-IIIは1.0067と若干大きい。一般的に円筒化すると炉心の
表面積の減少に伴い中性子漏洩が減少するために、実効増倍率が増加するが、解析結果はそれと整合した傾向を示している。また、炉心中心位置での 238U の核分裂反応率軸方向分布は、燃料移動に伴い燃料が増減した小領域の分布に違いがあり、その絶対値は SIMMER-IV の方が若干大きくなり、非対称パターンの反応度変化は SIMMER-IV の方が若干大きくなっている。しかしながら、それぞれの差は十分小さく、今回の解析においては 2 次元体系、3 次元体系の違いによる影響はほとんどないものと考えられる。

上記の検討により、SIMMER-III 及び SIMMER-IV はどちらも十分な精度で実験を模擬できていることが分かった。
4. 検討及び評価

本章では、SIMMER-III 及び SIMMER-IV による FCA VIII-2 スランピング実験解析について結果の分析と計算条件の合理化について検討を行うため、まず、過去に実施した SIMMER-II12) を用いた FCA VIII-2 スランピング実験解析との比較を行う。比較に際して非等方散乱の取り扱いは P_{61} に固定し、解析コードの差、角度方向の離散化次数の差、核データの差、エネルギー群縮約の差に着目して検討を行う。続いて SIMMER-III 及び SIMMER-IV と汎用解析コードの比較を行うことで、SIMMER-III 及び SIMMER-IV の検証を行う。

4.1. SIMMER-II による解析結果との比較

本節では SIMMER シリーズの過去のバージョンである SIMMER-II による解析結果との比較を行うことで、各種計算条件の解析結果への影響について分析を行う。また、前述の通り SIMMER コードには断面積を取扱うルーチンが組み込まれており、詳細な解析を行うためには多くのメモリを必要とする。そのため、計算条件の解析結果への影響の分析を基にメモリ節約を目的とした計算条件の合理化についても検討を行う。

4.1.1. 解析ケースの概要

SIMMER-II は SIMMER シリーズの過去のバージョンで、SIMMER-III 及び SIMMER-IV と同様に核動特性モジュールは中性子輸送理論による空間依存動特性モデルを採用しているが、S_n 法に対する加速法として粗メッシュバランス法を用いている TWOTRAN13) を基に開発したという点が異なる。過去に実施した SIMMER-II による解析の概要は以下の通りである。

解析ケース：Sim2(9Gr/S4)\(^{11)}\)

本解析ケースでは SIMMER-II を用いて解析を実施しており、核データは JENDL-2 をベースとした JFS-3-J2 (70 群)\(^{14)}\) を 9 群に縮約して使用している。また、角度方向の離散化次数は S_4 を用いている。

解析体系は 2 次元 RZ 体系であるが、SIMMER-III 及び SIMMER-IV の解析とは異なり、解析対象範囲は軸ブランケットの外端及び径ブランケットの外端までであり、その外側のスペース領域は模擬していない。また、天然ウランブランケット及び径ブランケットの上下部のスペース部に関しては、天然ウランブランケット及び径ブランケットを上下方向に伸ばし、スペース部を埋めた形で解析を行っている。（Fig. 4-1）

解析ケース名は SIMMER-II によるエネルギー群 9 群、離散化次数は S_4 の解析であるため「Sim2(9Gr/S4)」とした。

上述の SIMMER-II による解析と前章にて示した SIMMER-III の解析との差としては、用いている加速法が粗メッシュバランス法か拡散合成法かという点（加速法の違い）と、輸送計算に関する近似である角度方向の離散化次数が異なる点（角度方向の離散化次数の差）、炉定数が異なる点
点（核データの違い）、エネルギー群縮約を行うか否かという点（エネルギー群縮約による差）、そして、解析体系が異なる点（体系の違い）を挙げることができる。ここで、加速法の違いは収束性、つまり計算時間に大きく影響するものであるため、計算結果には大きな違いは生じないと考えられる。これは FCA VIII-2 スランピング実験解析において TWOTRAN システムの解析（リバランス法）と TWODANT システムの解析（拡散合成法）を比較した論文において、両者の差が1%に過ぎていないことからも、加速法の違いが解析結果にほとんど影響しないことが分かる（ここで、この論文の解析は本解析と異なる体系を用いているため、単純に反応度の絶対値を比較することはできないことに注意が必要である。）そこで、加速法の違いを除いた残り 4 つの違いに着目し、これらの差を補完することを目的に以下の解析を実施した。なお、比較しやすくするため体系は全て 2 次元 RZ 体系とした。

● 解析ケース：Sim3(70Gr/S4)

本解析ケースでは SIMMER-III を用いて解析を実施しており、炉定数としては ADJ2000R（70 群）を使用している。角度方向の離散化次数としては解析ケース「Sim2(9Gr/S4)」と同様に S4 を用いている。また、解析体系は 2 次元 RZ 体系（Fig. 3-2）である。

解析ケース名は SIMMER-III によるエネルギー群 70 群、離散化次数は S4 の解析であるから「Sim3(70Gr/S4)」とした。

本解析ケースにより、角度方向の離散化次数に関する影響を確認する。

● 解析ケース：Sim3(18Gr/S8)及び Sim3(9Gr/S8)

本解析ケースでは SIMMER-III を用いて解析を実施しており、炉定数としては ADJ2000R（70 群）を 18 群及び 9 群に縮約して使用している。ここで、18 群は現在 SIMMER 解析において標準的に用いられている群数、9 群は解析ケース「Sim2(9Gr/S4)」と同様の群構造である。また、角度方向の離散化次数は S8 を用い、解析体系は 2 次元 RZ 体系（Fig. 3-2）である。

解析ケース名は SIMMER-III による離散化次数は S8 の解析であることから、エネルギー群 18 群及び 9 群での解析を「Sim3(18Gr/S8)」、「Sim3(9Gr/S8)」とした。

本解析ケースにより、エネルギー群縮約に関する影響を確認する。

● 解析ケース：Sim3(Nucl.)

本解析ケースでは SIMMER-III を用いて解析を実施しており、炉定数としては ADJ2000R（70 群）を 9 群に縮約して使用している。また、角度方向の離散化次数は S4 を用い、解析体系は「Sim2(9Gr/S4)」と同様のプランケットの外端までしか模擬していない 2 次元 RZ 体系（Fig. 4-1）である。

解析ケース名は SIMMER-II による解析との差が主に核データであるという点から「Sim3(Nucl.)」とした。

本解析ケースにより、核データに関する影響を確認する。

ここで、エネルギー群縮約の方法について以下に示す。まず SLAROMコードによって均質せ
ルの70群実効マクロ断面積を算出する。温度については基準温度条件（296K）と試験領域温度を300、800、2100、4500Kに設定した計5つの均一温度条件を用いており、また、下方散乱は70群まで考慮している。次に、この70群実効マクロ断面積を用いてCITATION-FBRにて70群2次元RZ拡散計算を行い、5つの温度条件での中性子束を求める。得られた中性子束を試験領域内（燃料スランピング領域を除く非ボイド化領域）で平均化したものが縮約計算用の中性子スペクトルとなる。この縮約計算用の中性子スペクトルを用いて70群統合炉定数の縮約を行った。群縮約に用いた中性子エネルギー群構造はTable 4-1に示す通りである。

上記の解析ケースをまとめたものをTable 4-2に示す。ここで、前章にて示したSIMMER-III及びSIMMER-IVの解析に関しては上記の解析ケースの命名方法に則り、「Sim3(70Gr/S8)」及び「Sim4(70Gr/S8)」とした。

4.1.2. 解析結果の比較と考察

各解析ケースの反応度変化をTable 4-3に示す。角度方向の離散化次数を下げることやエネルギー群縮約を行うことによって、一番詳細な解析ケースである「Sim4(70Gr/S8)」との差が広がる傾向にあることが分かる。

まず、角度方向の離散化次数について確認する。S8を用いた「Sim3(70Gr/S8)」とS4を用いた「Sim3(70Gr/S4)」を比較すると、S4を用いた解析ケースの方が「Sim4(70Gr/S8)」との差が広がっていることが分かるが、差は最大でも2%程度であり、S4を用いた場合でもS8を用いた場合と同程度の精度で解析できていることが分かる。これはSIMMER-IIに関する過去の検討で導き出された結論である「FCA体系においては、S4以上であればその反応度変化に対する効果はほとんどない」に一致している。

次にエネルギー群縮約による影響について確認する。エネルギー群に関しては、縮約をしない70群を用いた「Sim3(70Gr/S8)」と18群及び9群に縮約した「Sim3(18Gr/S8)」及び「Sim3(9Gr/S8)」の3ケースについて比較すると、70群と18群では差が非対称パターンでは3%程度、対称パターンでは5%程度であるのに対し、70群と9群では差が非対称パターンでは11%程度、対称パターンでは19%程度であり、大きな差が生じていることが分かる。つまり、FCA VIII-2スランピング実験解析においてSIMMER-IIによる解析で採用された9群構造では精度良く解析することは困難であると考えられる。

次に核データの違いについて確認する。ADJ2000Rを用いた「Sim3(Nucl.)」とJFS-3-J2を用いた「Sim2(9Gr/S4)」を比較すると、両者の差は非対称パターンでは5%程度、対称パターンでは7%程度と多少差があるが、JFS-3-J2でも解析は可能であると考えられる。

最後に体系の違いについて確認する。「Sim3(Nucl.)」と「Sim3(9Gr/S8)」は角度方向の離散化次数と体系が異なるが、両者の反応度変化はほぼ一致している。上述の、S4以上であればその反応度変化に対する効果はほとんどないという点を踏まえると、体系の違いによる影響もほとんどないと考えられる。
次に各解析ケースの実効増倍率を Table 4-4 に示す。反応度変化と同様にエネルギー群縮約の影響が一番大きく、70 群から 9 群にすることで実効増倍率を 0.8% Δk 程度大きめに評価することとなった。それ以外の差に関しては、角度方向の離散化次数の差及び「Sim3(70Gr/S8)」と「Sim2(9Gr/S4)」の差はいずれも 0.1% Δk 程度と、十分小さな差となっていた。

最後に、各解析ケースの炉心中心位置での 238U と 235U の核分裂反応率軸方向分布を Fig. 4-2、Fig. 4-3、Fig. 4-4 及び Fig. 4-5 に示す。図より角度方向の離散化次数の違いと体系の違いによる差はほとんど見られなかった。群縮約の影響について見てみると、まず 235U の分布に関しては 70 群と 18 群の差及び 70 群と 9 群の差はどちらも小さく、同程度であった。一方、238U の分布に関しては 70 群と 18 群ではほとんど差が見られなかったが、9 群とした場合、高密度燃料領域では約 2%程度の過小評価、ポイド領域では約 3%程度の過大評価が見られた。9 群と 18 群の群構造を比べると、数百 eV 以上のエネルギー領域では 18 群の方が常に細かく群を分割しており、特に高いエネルギー領域では群の分割がより細かいため。238U の核分裂反応率分布は 1MeV 以上の高エネルギー中性子束の分布に対応しており、この群構造の違いによって上記の差が生じたものと考えられる。本体系の試験領域における中性子スペクトルは数百 keV にピークを持っており、この分布の差が上述の反応度変化にも大きく影響を与えたものと考えられる。

以上の検討から、SIMMER-III 及び SIMMER-IV を用いた詳細な解析と過去に実施した SIMMER-II による解析を比べると、エネルギー群数を 9 群から 70 群にしたことによる影響が大きく効いていることが分かった。また、計算条件の合理化の観点では、燃料スランピング実験解析を実施する場合、エネルギー群縮約は 18 群程度、角度方向の離散化次数は S4 としたとしても、十分な精度を持った解析を行うことが可能であることが分かった。

4.2. 汎用解析コードとの比較

本節では一般的な炉物理計算コードとの比較を行うことで SIMMER-III 及び SIMMER-IV の検証を行う。

汎用解析コードとしては、中性子束を輸送理論で解く PARTISN18）（DANTSYS の後継として開発された並列多次元 Sn 輸送計算コード）、拡散理論で解く CITATION-FBR17）（2・3 次元中性子拡散コード）、反応度変化を算出する SNPERT-3D19）（3 次元輸送拡散計算コード）、SNPERT20）（2 次元輸送拡散計算コード）、PERKY21）（2・3 次元拡散拡散計算コード）が挙げられる。これらは広く炉物理の分野で用いられている解析コードである。そこで本節ではこれらの汎用解析コードを用いて FCA VIII-2 スランピング実験解析を行い、SIMMER-III 及び SIMMER-IV による解析結果との比較を行う。

4.2.1. 汎用解析コードによる解析の概要

汎用解析コードによる解析のフロー図を Fig. 4-6 に示す。炉定数としては ADJ2000R（70 群）を用い、SLAROM にて計算に使用する全ての物質の均質セルの 70 群実効マクロ断面積を作成する。なお、この際の下方散乱群数は 70 群までとし、解析には多群輸送近似補正を施した断面積を用い
る。S_8近似輸送計算としては PARTISN を、拡散計算としては CITATION-FBR を用いて解析を行う。また、3 次元の S_8近似輸送厳密摂動計算としては SNPERT-3D を、2 次元の S_8近似輸送厳密計算としては SNPERT を、そして拡散厳密摂動計算としては PERKY を用いた。なお、解析モデルとしては Fig. 3-2、Fig. 3-3 及び Fig. 3-4 を、原子数密度としては Table 2-1 の値を用いて解析を実施した。

4.2.2. 解析結果の比較と考察

各解析ケースの反応度変化を Table 4-5 に、実効増倍率を Table 4-6 に示す。また、2 次元体系と3次元体系について、炉心中心位置での ^{238}U と ^{235}U の核分裂反応率軸方向分布をそれぞれFig. 4-7、Fig. 4-8 及び Fig. 4-9 に示す。

まず輸送理論を用いた解析（PARTISN、SNPERT、SNPERT-3D）について確認していく。反応度変化に関して実験結果と比較すると、まず非対称パターン（A1、A2、A3 ケース）では 2 次元体系の C/E 値が 0.92～1.02、3 次元体系では 0.94～1.03、対称パターン（S ケース）では 2 次元体系と 3 次元体系の C/E 値が 0.87 及び 0.93 となっている。実効増倍率に関しては、実験結果に対する差としては 2 次元体系では 0.49% Δk、3 次元体系では 0.12% Δk と小さく、良い精度で解析が行われている。これらの結果を前章にて示した SIMMER-III 及び SIMMER-IV の解析結果と比較すると、同程度の値になっていることが分かる。SIMMER-III 及び SIMMER-IV と PARTISN どちらも輸送算においては DANTSYS を元に開発しているが、使用する核分裂スペクトルの違い（特定核種の核分裂スペクトルか代表的な物質領域の核分裂スペクトル）や、収束速度向上に関する収束条件の変更の有無といった差が存在する。また、核データ作成時の計算順序の違いや、SIMMER-III 及び SIMMER-IV のコードの制約上、数密度についても PARTISN と若干の差がある。しかしながら、両者の実効増倍率の差は 0.14% Δk と十分に小さく、両者の差が解析精度に与える影響は十分小さいものと考えられる。また、炉心中心位置での ^{238}U と ^{235}U の核分裂反応率軸方向分布も汎用解析コードと SIMMER-III 及び SIMMER-IV でほぼ一致しており、SIMMER-III 及び SIMMER-IV 信頼性の高い解析コードであることが確認できた。

次に、拡散理論を用いた解析（CITATION-FBR、PERKY）について確認していく。拡散理論を用いた解析でも、燃料スランピング領域の燃料移動領域が A1、A2、A3 ケースと拡大するにつれて、解析結果と実験結果との差が広がる傾向は輸送理論と一致しているが、輸送理論に比べて解析結果と実験結果の差が著しく大きくなっていることが分かる。また、S ケースでは、輸送理論の解析結果が実験結果と 10%程度の差であったのに対し、拡散理論では 40～50%程度の差が生じていた。加えて、拡散理論を用いた場合、どのケースに関しても反応度は負の方向に推移していることも分かった。そこで、Fig. 4-11 に示す輸送理論と拡散理論による厳密摂動計算における反応度変化の反応度成分（非漏洩項、漏洩項）をみると、燃料スランピング領域の燃料移動領域が A1、A2、A3 ケースと拡大するにつれ、拡散理論の中性子の漏洩性の寄与は輸送理論に比べて大きくなくなっていくことが分かる。一方、S ケースでは、非漏洩項の絶対値が輸送理論に比べて拡散理論の方が大きくなくなっていることが分かる。加えて Fig. 4-9 及び Fig. 4-10 に示す核分裂反応率軸方向分布をみてみると、輸送理論に比べて拡散理論の方がボイド領域の寄与が大きく、高密度燃料領域で小さくなっていることから、拡散理論では高密度燃料領域からボイド領域へ移動する中
性子数が過大に評価されているものと考えられる。非対称パターンでは、高密度燃料領域からボイド領域へ移動した中性子はそのまま体系外に出やすいため、この過大評価が漏洩項の絶対値を増加させ、負の方向に反応度が推移したと考えられる。一方、対称パターンでは、ボイド領域の上に高密度燃料領域あることからこの過大評価が漏洩に及ぼす影響はあまりないが、高密度燃料領域の中性子数の減少が非漏洩項の減少を促し、結果として負の方向に反応度が推移したと考えられる。以上の結果より、燃料スランピングのような大規模な燃料移動に関する解析として拡散理論を用いることは不適切であり、そのような事象を評価するSIMMER-III及びSIMMER-IVでは輸送理論を用いることが妥当であるということを確認できた。

4.3. 検討結果

本章で検討を行った解析ケースと前章にて示したSIMMER-III及びSIMMER-IVの反応度变化の値をFig. 4-12及びFig. 4-13にまとめる。

まず、拡散理論を用いた解析コード（CITATION-FBR、PERKY）ではボイド領域のような希薄組成中の中性子の流れを正しく模擬できていないため、燃料スランピングのような大規模な燃料移動に関する解析には不適切であると考えられる。一方、輸送理論（エネルギー群数70群、角度方向の離散化次数S8）を用いた汎用解析コード（PARTISN、SNPERT-II、SNPERT3D）と同一条件下でのSIMMER-III及びSIMMER-IVの解析結果を比較すると、両者はほぼ一致しており、実験値との差も十分に小さいことからSIMMER-III及びSIMMER-IVは信頼性の高い解析コードであることが確認できた。加えて、燃料スランピング実験解析を実施する場合、エネルギー群縮約を18群程度、角度方向の離散化次数をS4にまで合理化することが可能であることも分かった。
5. 結論

SIMMER-III 及び SIMMER-IV における損傷炉心の核的挙動について検証を行うことを目的として、FCA VIII-2 臨界集合体での燃料スランピング実験の解析を実施した。

SIMMER-III による 2 次元 RZ 体系での解析と SIMMER-IV による 3 次元 XYZ 体系での解析（基本炉定数として高速炉用統合炉定数 ADJ2000R を用い、エネルギー群は 70 群、非等方散乱の取り扱いは多群輸送近似、角度方向の離散化次数は S8 として解析を行った。）では、反応度変化に関する計算値と実験値の比（C/E 値）が非対称パターン（A1, A2, A3 ケース）で 0.91 〜 1.01、対称パターン（S ケース）で 0.93 及び 0.98 と十分な精度で実験を模擬できており、輸送理論に基づく汎用解析コード（炉物理分野で多用されている）である PARTISN、SNPERT、SNPERT-3D による解析の結果ともほぼ一致していることから、SIMMER-III 及び SIMMER-IV は信頼性の高い解析コードであることが確認できた。また、エネルギー群縮約と角度方向の離散化次数に関する合理化の検討を行ったところ、SIMMER-III 及び SIMMER-IV による FCA VIII-2 燃料スランピング実験解析を実施する際には、エネルギー群縮約を 18 群程度、角度方向の離散化次数を S4 にまで合理化することが可能であることも分かった。
参考文献

5) Kondo, S. et al., SIMMER-III: an advanced computer program for LMFBR severe accident analysis, ANP'92 international conference on design and safety of advanced nuclear power plants, Tokyo, JAPAN, 1992.

19) 私信。

Table 2-1 体系を構成する物質の平均原子数密度
(Unit: 10^{24} atoms/cm3)

<table>
<thead>
<tr>
<th>Material</th>
<th>Test region</th>
<th>Driver region</th>
<th>Blanket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Axial blanket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal core (Na voided)</td>
<td>Core (Na voided)</td>
<td>Fuel</td>
</tr>
<tr>
<td>239Pu</td>
<td>0.00105</td>
<td>0.00105</td>
<td>0.00209</td>
</tr>
<tr>
<td>240Pu</td>
<td>0.00009</td>
<td>0.00009</td>
<td>0.00018</td>
</tr>
<tr>
<td>241Pu</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>235U</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00003</td>
</tr>
<tr>
<td>238U</td>
<td>0.00687</td>
<td>0.00687</td>
<td>0.01374</td>
</tr>
<tr>
<td>O</td>
<td>0.01714</td>
<td>0.01714</td>
<td>0.03428</td>
</tr>
<tr>
<td>Na</td>
<td>0.00766</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al</td>
<td>0.00240</td>
<td>0.00240</td>
<td>0.00480</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00340</td>
<td>0.00346</td>
<td>0.00236</td>
</tr>
<tr>
<td>Fe</td>
<td>0.01525</td>
<td>0.01259</td>
<td>0.00874</td>
</tr>
<tr>
<td>Ni</td>
<td>0.00155</td>
<td>0.00149</td>
<td>0.00106</td>
</tr>
</tbody>
</table>

Table 2-2 基準体系からの反応度変化及び測定誤差
(Unit: $10^{-4} / k/k'$)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>A1 Case</th>
<th>A2 Case</th>
<th>A3 Case</th>
<th>S Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Value</td>
<td>5.3 ± 0.3</td>
<td>12.6 ± 0.4</td>
<td>15.2 ± 0.4</td>
<td>-4.1 ± 0.3</td>
</tr>
</tbody>
</table>
Fig. 2-1 実験体系の炉心断面図（XY 平面）
Fig. 2-2 実験体系の炉心断面図（RZ体系）
Fig. 2-3 燃料スランピング領域の燃料移動パターン
Fig. 2.4：核分裂反応発生の測定結果

235U フィションレート（仮想単位）

距離から中間面（cm）

試験領域

下部ブランケット

上部ブランケット

実験

A0 A1 A2 A3 S
<table>
<thead>
<tr>
<th>No.</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Core (Na voided)</td>
<td>Core (Na voided)</td>
<td>Compacted fuel</td>
<td>Core (Na voided)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Core (Na voided)</td>
<td>Compacted fuel</td>
<td></td>
<td>Compacted fuel</td>
</tr>
<tr>
<td>3</td>
<td>Core (Na voided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Void (spacer)</td>
<td>Void (spacer)</td>
<td>.Void (spacer)</td>
<td></td>
<td>Void (spacer)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Void (spacer)</td>
<td></td>
<td>Compacted fuel</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Core (Na voided)</td>
<td>Core (Na voided)</td>
<td></td>
<td>Core (Na voided)</td>
</tr>
</tbody>
</table>
Table 3-2 反応度変化の実験結果と解析結果の比較

(Unit: $10^{-4} \frac{\Delta k}{k/k'}$

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Reactivity Change</th>
<th>SIMMER-IV (XYZ)</th>
<th>SIMMER-III (RZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change</td>
<td>C/E</td>
<td>C-E</td>
</tr>
<tr>
<td>A1 Case</td>
<td>5.3±0.3</td>
<td>5.4</td>
<td>1.01</td>
</tr>
<tr>
<td>A2 Case</td>
<td>12.6±0.4</td>
<td>12.1</td>
<td>0.96</td>
</tr>
<tr>
<td>A3 Case</td>
<td>15.2±0.4</td>
<td>14.1</td>
<td>0.93</td>
</tr>
<tr>
<td>S Case</td>
<td>-4.1±0.3</td>
<td>-4.0</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 3-3 実効増倍率の実験結果と解析結果の比較

(Temperature 23°C)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Multiplication Factor (k_{eff})</th>
<th>SIMMER-IV (XYZ)</th>
<th>SIMMER-III (RZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multiplication Factor (k_{eff}) (C-E)</td>
<td>C-E</td>
<td>Multiplication Factor (k_{eff}) (C-E)</td>
</tr>
<tr>
<td>A0 Case</td>
<td>1.0032±0.0003</td>
<td>1.0030</td>
<td>-0.02</td>
</tr>
</tbody>
</table>
Fig. 3-1 SIMMER コードの全体構成
Fig. 3-2 SIMMER-IIIによる解析モデル（2次元RZ体系）
Fig. 3-3 SIMMER-IV による解析モデル（3次元 XYZ体系、XY平面）
SIMMER-IV による解析モデル（3 次元 XYZ 体系、RZ 平面）
Fig. 3-5 The fission rate distribution of 238U and 235U in the center position of the reactor (experimental results and SIMMER-III analysis results).
Fig. 3-6 炉心中心位置での^{238}Uと^{235}Uの核分裂反応率分布（実験結果とSIMMER-IV解析結果）
Table 4-1 中性子エネルギー群構造

<table>
<thead>
<tr>
<th>70群</th>
<th>18群</th>
<th>9群</th>
<th>エネルギー [eV]</th>
<th>70群</th>
<th>18群</th>
<th>9群</th>
<th>エネルギー [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>上限</td>
<td></td>
<td></td>
<td></td>
<td>下限</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00E+07</td>
<td>36</td>
<td>14</td>
<td>6</td>
<td>1.58E+03</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7.79E+06</td>
<td>37</td>
<td>14</td>
<td>6</td>
<td>1.23E+03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6.07E+06</td>
<td>38</td>
<td></td>
<td>6</td>
<td>9.61E+02</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4.72E+06</td>
<td>39</td>
<td>15</td>
<td>6</td>
<td>7.49E+02</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3.68E+06</td>
<td>40</td>
<td>15</td>
<td>6</td>
<td>5.83E+02</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>2.87E+06</td>
<td>41</td>
<td>15</td>
<td>6</td>
<td>4.54E+02</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>6</td>
<td>2.23E+06</td>
<td>42</td>
<td>16</td>
<td>6</td>
<td>3.54E+02</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>7</td>
<td>1.74E+06</td>
<td>43</td>
<td>17</td>
<td>6</td>
<td>2.75E+02</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>1.35E+06</td>
<td>44</td>
<td>17</td>
<td>6</td>
<td>2.14E+02</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
<td>1.05E+06</td>
<td>45</td>
<td></td>
<td>6</td>
<td>1.67E+02</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10</td>
<td>8.21E+05</td>
<td>46</td>
<td>18</td>
<td>6</td>
<td>1.30E+02</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>11</td>
<td>6.39E+05</td>
<td>47</td>
<td></td>
<td>6</td>
<td>1.01E+02</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>12</td>
<td>4.98E+05</td>
<td>48</td>
<td></td>
<td>6</td>
<td>7.89E+01</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>13</td>
<td>3.88E+05</td>
<td>49</td>
<td></td>
<td>6</td>
<td>6.14E+01</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>14</td>
<td>3.02E+05</td>
<td>50</td>
<td></td>
<td>6</td>
<td>4.79E+01</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>15</td>
<td>2.35E+05</td>
<td>51</td>
<td></td>
<td>6</td>
<td>3.73E+01</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>16</td>
<td>1.83E+05</td>
<td>52</td>
<td></td>
<td>6</td>
<td>2.90E+01</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>17</td>
<td>1.43E+05</td>
<td>53</td>
<td></td>
<td>6</td>
<td>2.26E+01</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>18</td>
<td>1.11E+05</td>
<td>54</td>
<td></td>
<td>6</td>
<td>1.76E+01</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>19</td>
<td>8.65E+04</td>
<td>55</td>
<td></td>
<td>6</td>
<td>1.37E+01</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>20</td>
<td>6.74E+04</td>
<td>56</td>
<td></td>
<td>6</td>
<td>1.07E+01</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>21</td>
<td>5.25E+04</td>
<td>57</td>
<td></td>
<td>6</td>
<td>8.32E+00</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>22</td>
<td>4.09E+04</td>
<td>58</td>
<td></td>
<td>6</td>
<td>6.48E+00</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>23</td>
<td>3.18E+04</td>
<td>59</td>
<td></td>
<td>6</td>
<td>5.04E+00</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>24</td>
<td>2.48E+04</td>
<td>60</td>
<td></td>
<td>6</td>
<td>3.93E+00</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>25</td>
<td>1.93E+04</td>
<td>61</td>
<td></td>
<td>6</td>
<td>3.06E+00</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>26</td>
<td>1.50E+04</td>
<td>62</td>
<td></td>
<td>6</td>
<td>2.38E+00</td>
</tr>
<tr>
<td>28</td>
<td>27</td>
<td>27</td>
<td>1.17E+04</td>
<td>63</td>
<td></td>
<td>6</td>
<td>1.86E+00</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>28</td>
<td>9.12E+03</td>
<td>64</td>
<td></td>
<td>6</td>
<td>1.44E+00</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>29</td>
<td>7.10E+03</td>
<td>65</td>
<td></td>
<td>6</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>30</td>
<td>5.53E+03</td>
<td>66</td>
<td></td>
<td>6</td>
<td>8.76E-01</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>31</td>
<td>4.31E+03</td>
<td>67</td>
<td></td>
<td>6</td>
<td>6.83E-01</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>32</td>
<td>3.35E+03</td>
<td>68</td>
<td></td>
<td>6</td>
<td>5.32E-01</td>
</tr>
<tr>
<td>34</td>
<td>33</td>
<td>33</td>
<td>2.61E+03</td>
<td>69</td>
<td></td>
<td>6</td>
<td>4.14E-01</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>34</td>
<td>2.03E+03</td>
<td>70</td>
<td></td>
<td>6</td>
<td>3.22E-01</td>
</tr>
</tbody>
</table>

- 30 -
Table 4-2 解析ケース一覧

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>解析コード</th>
<th>核データ</th>
<th>エネルギー群数</th>
<th>解析体系</th>
<th>離散化次数</th>
<th>散乱の取り扱い</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sim4(70Gr/S8)</td>
<td>SIMMER-IV</td>
<td>ADJ2000R</td>
<td>70</td>
<td>3次元 XYZ</td>
<td>8</td>
<td>P_{0/1}</td>
</tr>
<tr>
<td>Sim3(70Gr/S8)</td>
<td>SIMMER-III</td>
<td>↑</td>
<td>↑</td>
<td>2次元 RZ</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Sim3(70Gr/S4)</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>4</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Sim3(18Gr/S8)</td>
<td>↑</td>
<td>↑</td>
<td>18</td>
<td>↑</td>
<td>8</td>
<td>↑</td>
</tr>
<tr>
<td>Sim3(9Gr/S8)</td>
<td>↑</td>
<td>↑</td>
<td>9</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Sim3(Nucl.)</td>
<td>↑</td>
<td>↑</td>
<td>2次元 RZ</td>
<td>4</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Sim2(9Gr/S4)</td>
<td>SIMMER-II</td>
<td>JFS-3-J2</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

*1: ブランケットの外端より外側の領域は模擬しない。
Table 4-3 反応度変化の解析結果の比較（SIMMER-II との比較）
(Unit : $10^{-4} \triangle k/kk'$)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Reactivity Change</th>
<th>Reactivity Change [C/E]</th>
<th>Sim4(70Gr/S8)</th>
<th>Sim3(70Gr/S8)</th>
<th>Sim3(70Gr/S4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 Case</td>
<td>5.3 ± 0.3</td>
<td>5.4</td>
<td>5.3</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1.01]</td>
<td>[1.00]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 Case</td>
<td>12.6 ± 0.4</td>
<td>12.1</td>
<td>12.0</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.96]</td>
<td>[0.95]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 Case</td>
<td>15.2 ± 0.4</td>
<td>14.1</td>
<td>13.9</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.93]</td>
<td>[0.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Case</td>
<td>-4.1 ± 0.3</td>
<td>-4.0</td>
<td>-3.8</td>
<td>-3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.98]</td>
<td>[0.93]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Unit : $10^{-4} \triangle k/kk'$)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Reactivity Change</th>
<th>Reactivity Change [C/E]</th>
<th>Sim3(18Gr/S8)</th>
<th>Sim3(9Gr/S8)</th>
<th>Sim3(Nucl.)</th>
<th>Sim2(9Gr/S4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 Case</td>
<td>5.2</td>
<td>4.7</td>
<td>4.7</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.98]</td>
<td>[0.89]</td>
<td>[0.88]</td>
<td></td>
<td>[0.85]</td>
</tr>
<tr>
<td>A2 Case</td>
<td>11.8</td>
<td>10.8</td>
<td>10.7</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.93]</td>
<td>[0.86]</td>
<td>[0.85]</td>
<td></td>
<td>[0.82]</td>
</tr>
<tr>
<td>A3 Case</td>
<td>13.6</td>
<td>12.4</td>
<td>12.4</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.90]</td>
<td>[0.82]</td>
<td>[0.82]</td>
<td></td>
<td>[0.78]</td>
</tr>
<tr>
<td>S Case</td>
<td>-4.0</td>
<td>-4.5</td>
<td>-4.5</td>
<td>-4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.98]</td>
<td>[1.11]</td>
<td>[1.10]</td>
<td></td>
<td>[1.02]</td>
</tr>
</tbody>
</table>
Table 4-4 実効増倍率の解析結果の比較（SIMMER-IIとの比較）

(Temperature 23℃)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Multiplication Factor (k_{eff})</th>
<th>Multiplication Factor (k_{eff})</th>
<th>[C-E (% Δk)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sim4(70Gr/S8)</td>
<td>Sim3(70Gr/S8)</td>
</tr>
<tr>
<td>A0 Case</td>
<td>1.0032±0.0003</td>
<td>1.0030</td>
<td>1.0067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-0.02]</td>
<td>[0.35]</td>
</tr>
</tbody>
</table>

(Temperature 23℃)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Multiplication Factor (k_{eff})</th>
<th>[C-E (% Δk)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sim3(18Gr/S8)</td>
<td>Sim3(9Gr/S8)</td>
</tr>
<tr>
<td>A0 Case</td>
<td>1.0096</td>
<td>1.0150</td>
</tr>
<tr>
<td></td>
<td>[0.64]</td>
<td>[1.18]</td>
</tr>
</tbody>
</table>
Table 4-5 反応度変化の解析結果の比較（汎用コードとの比較）

(Unit : $10^{-4} \triangle k/k'\)"

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Reactivity Change</th>
<th>Reactivity Change [C/E]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SNPERT-3D</td>
<td>SNPERT</td>
</tr>
<tr>
<td>A1 Case</td>
<td>5.3 ±0.3</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>[1.03]</td>
<td>[1.02]</td>
</tr>
<tr>
<td>A2 Case</td>
<td>12.6 ±0.4</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>[0.97]</td>
<td>[0.96]</td>
</tr>
<tr>
<td>A3 Case</td>
<td>15.2 ±0.4</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>[0.94]</td>
<td>[0.92]</td>
</tr>
<tr>
<td>S Case</td>
<td>-4.1 ±0.3</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
<td>[0.93]</td>
<td>[0.87]</td>
</tr>
</tbody>
</table>

Table 4-6 実効増倍率の解析結果の比較（汎用コードとの比較）

(Temperature 23℃)

<table>
<thead>
<tr>
<th>Slumping Pattern</th>
<th>Experimental Multiplication Factor (k_{eff})</th>
<th>Multiplication Factor (k_{eff}) [C-E (% Δk)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARTISN(3D)</td>
<td>PARTISN(2D)</td>
</tr>
<tr>
<td>A0 Case</td>
<td>1.0032 ±0.0003</td>
<td>1.0044</td>
</tr>
<tr>
<td></td>
<td>[0.12]</td>
<td>[0.49]</td>
</tr>
</tbody>
</table>
Fig. 4-1 解析ケース S2-9Gr の 2 次元 RZ 体系解析モデル
Fig. 4-2 各位置での^{235}Uと^{238}Uの核分裂反応率分布
（方向の離散化次数, S_8, 及び S_4）
Fig. 4-3 炉心中心位置での238U と235Uの核分裂反応率分布（エネルギー群縮約70群及び18群）
図4-4 燃料中心位置での核分裂反応率分布（エネルギー群縮約70群及び9群）
Fig. 4-5

![Graph showing fission rate distribution of 238U and 235U](graph.png)

238U Fission Rate (arbitrary unit)

Distance from midplane (cm)

Test region

- Lower blanket
- Upper blanket

Sim3 (9Gr/S8)

Sim3 (Nucl.)

A0

A1

A2

A3

S

JAEA-Research 2015-002
Fig. 4-6 汎用解析コードにおける解析フロー図
Fig. 4-7

238U and 235U fission rate distributions at the central position (SIMMER-III simulation results and general analysis code: transport theory).

Distance from midplane (cm)

235U Fission rate (arbitrary unit)

Test region

Distance from midplane (cm)

238U Fission rate (arbitrary unit)

Lower blanket

Upper blanket

Test region

Lower blanket

Upper blanket

Sim3 (70Gr/S8)

PARTISN(2D)
Fig. 4-8 炉心中心位置での^{235}Uと^{238}Uの核分裂反応率分布
(SIMMER-IV解析結果と2次元解析コード：輸送理論)
Fig. 4-9: The fission rate distribution of 238U and 235U in the center position (SIMMER-III simulation results and CITATION2D: diffusion theory).
Fig. 4.10 炉心中心位置での235Uと238Uの核分裂反応率分布 (SIMMER-IV 解析結果と汎用解析コード：拡散理論)
Fig. 4-11 厳密挙動計算における反応度変化の内訳
Fig. 4-12 各解析ケースの反応性変化の比較（左図：3次元体系、右図：2次元体系）

各解析ケースの反応性変化の比較（左図：3次元体系、右図：2次元体系）

Exp. SNPERT-II
PERKY-2D Sim3(70Gr/S8)

Exp. SNPERT3D
PERKY-3D Sim4(70Gr/S8)

Reactivity changes (10^-4/k/k')

A1 A2 A3 S

-10 -5 0 5 10 15 20

JAEA-Research 2015-002
Fig. 4-13 各解析ケースの反応度変化の比較（角度方向の離散化次数及びエネルギー群数）
This is a blank page.
国際単位系（SI）

表1. SI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>m</td>
<td>粘土メートル</td>
<td>質量</td>
<td>kg</td>
<td>ストーン</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>秒</td>
<td>速度</td>
<td>m/s</td>
<td>ノット</td>
</tr>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>感度</td>
<td>A/m</td>
<td>シントル</td>
</tr>
<tr>
<td>光度</td>
<td>cd</td>
<td>ワットラム</td>
<td>質量密度</td>
<td>kg/m³</td>
<td>ダニエル</td>
</tr>
<tr>
<td>熱量</td>
<td>J</td>
<td>ジュール</td>
<td>比熱</td>
<td>J/(kg⋅K)</td>
<td>シトル</td>
</tr>
<tr>
<td>円周</td>
<td>m</td>
<td>メートル</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
<tr>
<td>体積</td>
<td>m³</td>
<td>メートル³</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
<tr>
<td>動力</td>
<td>N</td>
<td>ニュートン</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
</tbody>
</table>

表2. 基本単位と併用されるSI組立単位の例

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量</td>
<td>kg</td>
<td>ストーン</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
<tr>
<td>比熱</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
<tr>
<td>比熱</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
<td>比熱容</td>
<td>J/(kg⋅K)</td>
<td>バリ␬</td>
</tr>
</tbody>
</table>

表3. 固有の名前と記号で表される組立単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気</td>
<td>V</td>
<td>バール</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

表4. 単位に固有の名前と記号を含む組立単位の例

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電流</td>
<td>A</td>
<td>アンペール</td>
<td>電力</td>
<td>W</td>
<td>ウォット</td>
</tr>
<tr>
<td>熱量</td>
<td>J</td>
<td>ジュール</td>
<td>電力</td>
<td>W</td>
<td>ウォット</td>
</tr>
<tr>
<td>熱量</td>
<td>J</td>
<td>ジュール</td>
<td>電力</td>
<td>W</td>
<td>ウォット</td>
</tr>
</tbody>
</table>

表5. SI接頭語

<table>
<thead>
<tr>
<th>接頭語</th>
<th>記号</th>
<th>数値</th>
<th>記号</th>
<th>数値</th>
<th>記号</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>µ</td>
<td>10⁻⁶</td>
<td>μ</td>
<td>µ</td>
<td>10⁻⁶</td>
<td>μ</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>10⁻⁹</td>
<td>n</td>
<td>n</td>
<td>10⁻⁹</td>
<td>n</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>10⁻¹²</td>
<td>p</td>
<td>p</td>
<td>10⁻¹²</td>
<td>p</td>
</tr>
</tbody>
</table>

表6. SI単位に属さないが、SI単位で表される数値

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

表7. SI単位に属さないが、SI単位で表される数値

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

表8. SI単位に属さないが、SI単位で表される数値

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

表9. 国際単位系（CGS）

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>摩擦</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

表10. SI単位に属さないその他の単位の例

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>組立単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>V</td>
<td>バール</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>T</td>
<td>テスラ</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>G</td>
<td>ガラス</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
<tr>
<td>磁気</td>
<td>B</td>
<td>ボルト</td>
<td>摺曲</td>
<td>g/cm²</td>
<td>ピソ</td>
</tr>
</tbody>
</table>

SI単位とは、国際単位系（International System of Units, SI）の単位を指す。