ガス冷却高速炉(GCFR)の開発とその熱・流体工学

1977年10月

河村洋

日本原子力研究所
Japan Atomic Energy Research Institute
この報告書は、日本原子力研究所がJAERI-Mレポートとして、不定期に刊行している研究報告書です。入手、複製などのお問合せは、日本原子力研究所技術情報部（茨城県つくば市つくば第一）まで、お申しごきください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.
ガス冷却高速炉（GCFR）の開発とその熱・流体工学

日本原子力研究所東海研究所原子炉工学部

河村 洋

(1977年9月9日受理)

ガス冷却高速炉（GCFR）は、HTGRからの高圧ヘリウム技術とLMFBRからの燃料技術を受け継いだ高速増殖炉で、LMFBRよりも0.2高い増殖率を実現できる。本報では、GCFRの開発の歴史を概観したのち、熱・流体工学的観点から、原子炉の構造、熱設計、安全性などについて解説する。

GCFRの燃料設計上の特色は、燃料棒を上向きに設置するために燃料棒に種面を用いていることと、核分裂生成ガスを常時ベントして被覆材にかかる応力を小さくしている点にある。これらについては、すでに多くの開発試験が行なわれている。

ヘリウムは化学的に安定で相変化もしないためにLMFBRにおけるような燃料と冷却材の急激な反応の心配はないが、系を高圧にするために減圧事故の可能性が避けたく、その解析と対策の確立が必要である。

現在、米国において300MWe原型炉の建設が実現に近づいており、各種の開発試験が国際協力のもとに行なわれている。GCFRはLMFBRに比して遅れてスタートしたが同等の可能性を持つ高速増殖炉である。300MWe原型炉が実現すれば両者の比較が可能となり、高速炉の分野にも選択の可能性が生まれることになるだろう。
Development of Gas-Cooled Fast Reactor and Its Thermo-Hydraulics

Hiroshi KAWAMURA

Division of Reactor Engineering, Tokai Research Establishment, JAERI

(Received September 9, 1977)

Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2.

Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod.

Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible.

In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two.

Keywords; Gas-Cooled Fast Reactor, Fast Breeder Reactor, Helium Technology, Roughened Surface, Vent System, Demonstration Plant, Thermo-Hydraulics.
目次

1. はしがき .. 1
2. 開発の歴史 ... 3
 2.1 初期の開発（1960年代） .. 3
 2.2 現在の開発体制 .. 7
3. GCFRの熱-流体工学上の概要 ... 9
 3.1 GCFRの熱-流体工学上の特徴 .. 9
 3.2 GCFRの炉心設計 .. 12
 3.3 燃料棒および燃料要素 ... 14
 3.4 ベントシステム ... 15
 3.5 ヘリウム循環機 ... 15
 3.6 主蒸気発生器 ... 16
4. GCFRの熱-流体設計 ... 18
 4.1 粗面の熱伝達 .. 18
 4.2 圧力損失 .. 19
 4.3 炉心の熱設計 .. 20
 4.4 蒸気サイクル ... 20
5. GCFRの安全性 .. 21
 5.1 核的安全性 .. 21
 5.2 残留熱除去システム ... 21
 5.3 大型炉の安全解析 ... 22
 5.4 強制循環の喪失と炉心溶融 ... 22
 5.5 コア・キャッチャー（P A F C） .. 23
 5.6 確率論的安全性評価 ... 24
6. 開発・試験 ... 26
7. あとがき ... 29

参照文献 ... 30
図 ... 32
1. は し が き

最近、ヨーロッパ諸国やアメリカの電力会社を中心に、ガス冷却高速炉（GCFR）への関心が高まりつつある。すなわち、1977年2月に結ばれたアメリカと西ドイツの間のガス冷却炉に関する国際協定では、GCFRが大きな柱となっている。とくにアメリカでは、300MWe原型炉の建設候補地としてテキサス州アマリロが決定し、多数の電力会社の参加による「ヘリウム増殖炉協会（HBA）」も発足した。現在PDLPと呼ばれるプロジェクトの決定段階にあり、その後1978～1981年に予定される開発段階を経て、事態が顕著に進展すれば、1982年には300MWe原型炉の建設が開始される。

このようなGCFRの実現化をささげているのは、HTGRやAGRのガス炉の発展とナトリウム冷却高速炉LMFBRの開発である。すなわち、HTGRによって発展させられた蒸気発生器やプレストレスド・コンクリート容器（PCRV）などの高圧ヘリウム技術に対しLMFBRの燃料および燃料サイクル技術を合体させたものである。現在のGCFRであるといえる。

GCFRの概要は、下記のようにまとめることができる。まず、冷却材は約100気圧（10MPa）の高圧ヘリウムで、PCRVによって格納される。ヘリウムは安定な気体であるから、ナトリウム冷却で心配されるような燃料と冷却材の反応による急激なエネルギー発生の可能性がない。また、冷却材の持つ反応度効果も極めて小さい。燃料は、LMFBR用燃料とは異なった（U₆Pa）O₂、ステンレス被覆のプルーム型燃料であるが、直径がやや大きく、部分的に粗面加工が施されている。また、核分裂生成ガスをベントする点に特徴がある。このような型式の原子炉によって、LMFBRと同等の経済性を持つ発電を行ない、かつLMFBRより約0.2高い増殖比を得ることが可能となる。

現在の世界の動向としては、LMFBRが高速炉開発の主流にあることはいうまでもない。1950年頃アメリカで作られた初期の高速炉（ClementineやEBR-I）では、金属燃料が用いられており、かつ炉出力も小さかったため、出力密度が高く、また冷却材流路もきわめて狭かった。このような条件下では、たとえば液体金属で冷却する以外に方法はなかったといえる。こうして、高速炉を液体金属で冷却するという組合せができあがった。

しかしながら、その後軽水炉によって鈷化物燃料が実用化され、かつ経済性の観点から原子炉が大型化するにつれて出力密度は低下しかつ流路も広くなったために、炉内にガスを高速で流すことが可能になった。他方、AGRやHTGRにおけるPCRVの開発によって、高圧のガスを原子炉の冷却材とする技術が確立された。これらの要因に支えられて、GCFRはおくれたが、スタートラインに立つことになった。

この間にLMFBRの開発が進展しているが、この開発成績と実績によってLMFBRが現在の地歩を占めているのは当然である。他方、最近の減速経済のために、各国とも、複数の高速炉を並行して開発することはむつかしくなっている。そのため、GCFRの開発においては、国際協力が不可欠の条件となっている。

本報では、このようなGCFR開発や国際協力の歴史を概観し、その後、GCFRの技術的
な特性や安全性に関わる諸問題についてとくに熱・流体工学的な立場から解説し、最後にGC FR開発の現状を述べる。
2. 開発の歴史

2.1 初期の開発（1960年代）

ガス冷却高速炉（GCFR）に対する関心は、すでに1960年代の初頭に払われていた。1961年に開催された高速炉物理における会議で、Häfele(1)は、西独・カールスルーフ原子力研究所において、高速炉のヘリウム冷却についての検討がなされていると述べている。

この研究の結果は、1963年のアルゴノスにおける会議で、Smidt(2)によって報告された。ここではすでに、50気圧のヘリウムを冷却材として用いることにより、比出力約0.8MW/kgを冷却することが計画されている。ヘリウムの入口温度は220℃、出口温度575℃で、これは最新の設計でもほとんど変わっていない。しかし、燃料表面を粗面にする方法は、検討はされたが採用されなかった。PCVRについても同様であった。

ついてて1964年のジュネーブ会議には、ヨーロッパGGAのFortescue(3)による検討結果が発表された。この設計では、

UとPuの混合燃料

ステンレス鋼被覆

68気圧のヘリウム冷却

つり下げ型炉心の下向き流による冷却

部分的に粗面加工した燃料棒

プレストレストコンクリート圧力容器

などの設計思想が採用され、その後のGA系GCFRに変らず受けつがれている。しかしこの段階では、まだベント型燃料は検討されていなかった。

1965年には、西独・カールスルーフ研究所のDalle Donne(4)が、大型GCFRの冷却材としてのHe、CO₂、水蒸気の比較を発表した。それによれば、水蒸気は冷却材として適しているが、He、CO₂による方が高い増殖比が得られる。He、CO₂でも圧力を70気圧以上に上げれば、冷却能力も良好である。また、冷却材のポイド反応度係数は、いずれのガスでも正にはなるが、He、CO₂では1ドリッなどにおさまるのに対し、水蒸気では5～9ドリッに達することが見出された。この段階では、HeとCO₂が水蒸気よりもGCFRの冷却材としてすぐれていると結論はされたが、この双方のいずれが最適であるかは結論されなかった。

この研究はその後も継続され、1967年には、カールスルーフのWirtz教授(5)によってそのサマリーが発表された。これによれば、CO₂とHeを比較すると、CO₂の方が安価であり、液体状で貯蔵運搬でき、密度が高いためターボ機械が小型ですむなどの利点を持つ。しかし、CO₂は高温では不活性ガスとはいえず、その酸化性が問題になること、またCO₂の音速はHeに比して小さいため圧力損失が大きく流れによる振動が激しくなることなどのため、むしろHeの方が冷却材として好ましいと考えられた。この研究ではこれ以外に、パナジウム合金やガスタービンの使用が検討され、これに、パナジウム合金被覆による非ベント型燃料と閉サイ
クールヘガスタービンよりなる「カールスルーエ（GfK）・コンセプト」と呼ばれる型式ができた。

他方、GGAでの開発は米国へ本拠を移し、ここでは「GGA・コンセプト」と呼ばれる型式ができあがった。これは、ステンレス被覆によるベント型燃料を用い、水蒸気サイクルにとって発電を行うもので、いわば既存の技術を最大限に利用して最短距離でGCFRを実現しようとするものであった。

米国原子力委員会は、1967年にORNLに対し、ナトリウム以外の冷却材を用いる高速増殖炉の評価研究を依頼した。この研究の結果は1969年にWASH-1090(6)として発表された。これにおいても、やはりHe冷却のGCFRを最も可能性の高い炉型としてあげている。この研究でまとめられた各炉型の特徴の比較を表1に示す。

表1 高速炉用としての各種冷却材の得失(6)

<table>
<thead>
<tr>
<th>利点</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ナトリウム</td>
<td></td>
</tr>
<tr>
<td>冷却材が失われないかぎり、事故時にも除熱がよい。</td>
<td></td>
</tr>
<tr>
<td>低圧で運転できる</td>
<td></td>
</tr>
<tr>
<td>ナトリウム冷却炉の経験がある</td>
<td></td>
</tr>
<tr>
<td>ポンプ作動が小さい</td>
<td></td>
</tr>
<tr>
<td>燃料被覆温度が低いか</td>
<td></td>
</tr>
<tr>
<td>除熱能力が最もよい</td>
<td></td>
</tr>
<tr>
<td>水蒸気</td>
<td></td>
</tr>
<tr>
<td>直接サイクルが可能</td>
<td></td>
</tr>
<tr>
<td>蒸気で内部が可視</td>
<td></td>
</tr>
<tr>
<td>工学技術の蓄積が最も大きい</td>
<td></td>
</tr>
<tr>
<td>常温で固化しない</td>
<td></td>
</tr>
<tr>
<td>ヘリウム</td>
<td></td>
</tr>
<tr>
<td>中間ループを必要としない</td>
<td></td>
</tr>
<tr>
<td>高い増殖比が得られる</td>
<td></td>
</tr>
<tr>
<td>透視で内部が可視</td>
<td></td>
</tr>
<tr>
<td>ポイド係数が小さい</td>
<td></td>
</tr>
<tr>
<td>化学的不活性</td>
<td></td>
</tr>
<tr>
<td>ガス冷却炉の技術蓄積がある</td>
<td></td>
</tr>
<tr>
<td>常温で固化しない</td>
<td></td>
</tr>
<tr>
<td>つねにガス性で相変化しない</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>難点</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ナトリウム</td>
<td></td>
</tr>
<tr>
<td>ポイド係数が正</td>
<td></td>
</tr>
</tbody>
</table>
○中間ループが必要
○水や空気と激しく反応する
○不透明である
○誘導放射能が大きく、一次系の保守がむつかしい
○機器の開発が必要

水蒸気
○高圧にせざるを得ない
○高速炉としての使用経験がない
○ポンプ動力が大きい
○事故時の冷却方式の確立が必要
○増殖比が小さい
○放射能で分解
○応力腐食がある
○タービンへのf.p.の移行
○ポット係数が正で大きい

ヘリウム
○高圧にせざるを得ない
○高速炉としての使用経験がない
○ポンプ動力が大きい
○事故時の冷却方式の確立が必要
○腐食のコントロールがむつかしい
○燃料被覆温度が高くなる
○機器の開発が必要

ヨーロッパ原子力機構（E N E A）は、専門家チームを作ってウィンフリースにおいてガスおよび水蒸気冷却高速炉の評価を行なった。ここではこれまでに述べたコールスルーニ（G F K）・コンセプトとG A・コンセプトの他に、英国から被覆粒子燃料を用いる炉型が提唱され、UKAEA・コンセプトと呼ばれた。ウィンフリースにおける評価活動は結局は二つの大きな意見に集約され、完全な合意を見るには至らなかった。すなわち、ナトリウム冷却高速炉（LMFBR）の開発に困難が生じた場合の保障としてのみＧＣＦＲは意味があるとする意見と、ちょうど現在の水素中子炉に各種の炉型が共存しているように、ＧＣＦＲもＬＭＦＢＲと競合して存在しうるとするものである。なお各国ともこの時点では、水蒸気冷却による高速炉には主たる関心を払わなくなっていた。

ウィンフリースにおける活動は、その後“チリリッヒ・クラブ”に受けつかった。これは、ヨーロッパ各国（オーストリア、ベルギー、西独、オランダ、スエーデン、スイス、英国）の政府によるＧＣＦＲの共同開発体制で、1969年に発足し、燃料、設計、物理、教育、安全等の各分野について専門家チームを結成した。

1969年には、この他にもまだ大きな動きがあった。その一つは、ヨーロッパの民間企業
の協同出資によるガス増殖炉研究協会（Gas Breeder Reactor Association, 略して
GBRA）の設立である。これは、ブラルセに本部を置き、ヨーロッパ各国から当初14の
企業が参加したもので、各種の商用炉規模のGCFRの設計研究を行ない現在に至っている。

他の一つは、西独における“ガス増殖炉メラランダム”と呼ばれる評価活動である。これは、
西独政府が、カールスルーヘとユーリッヒの両原子力研究所に依頼して行なったもので、19
71年にその結果が発表された。（7,8）ここでは、三つのコンセプト、すなわち
1）GGAコンセプト（ステンレス被覆、ベント燃料によるステム・サイクル）
2）カールスルーヘ（GIK）コンセプト（パナジウム合金被覆、非ベント燃料によるガスタ
ービン・サイクル）
3）UKAEAコンセプト（被覆粒子燃料によるステム・サイクル）
が比較検討された。評価にあたっては、同一の検定数や熱伝達率を用い、統一的な手法で比較
がなされた。

比較の結果のサマリーを表2に示す。これは、原子炉出力を1000 MWe、平均燃焼度を
75,000 MWD/t、ベント密度を83%にそろえたときの、上記の三型式のGCFRとLM
FBRの比較である。

<table>
<thead>
<tr>
<th></th>
<th>GGA型</th>
<th>GIK型</th>
<th>UKAEA型</th>
<th>LMFBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイクル</td>
<td>スチームターピン</td>
<td>ガスターピン</td>
<td>スチームターピン</td>
<td>スチームターピン</td>
</tr>
<tr>
<td>燃料</td>
<td>ビン型、ベント</td>
<td>ビン型、非ベント</td>
<td>被覆粒子</td>
<td>ビン型、非ベント</td>
</tr>
<tr>
<td>燃出力（最高） W/cm²</td>
<td>431</td>
<td>440</td>
<td>ー</td>
<td>530</td>
</tr>
<tr>
<td>平均燃焼度 MWD/t</td>
<td>7,500</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
</tr>
<tr>
<td>人口圧力 kg/cm²</td>
<td>70</td>
<td>100</td>
<td>70</td>
<td>ー</td>
</tr>
<tr>
<td>出口冷却材温度（℃）</td>
<td>600</td>
<td>706</td>
<td>675</td>
<td>580</td>
</tr>
<tr>
<td>被覆材・ホットスポット温度（℃）</td>
<td>755</td>
<td>850</td>
<td>950</td>
<td>700</td>
</tr>
<tr>
<td>正味プラント効率</td>
<td>36.2</td>
<td>34.9</td>
<td>37.1</td>
<td>41</td>
</tr>
<tr>
<td>燃料インベントリー</td>
<td>3136</td>
<td>2768</td>
<td>1796</td>
<td>1630</td>
</tr>
<tr>
<td>増幅比</td>
<td>1.44</td>
<td>1.32</td>
<td>1.19</td>
<td>1.28</td>
</tr>
<tr>
<td>倍増時間(*)年</td>
<td>132</td>
<td>178</td>
<td>31.8</td>
<td>14.5</td>
</tr>
<tr>
<td>費本費率(***DM/kWe)</td>
<td>591</td>
<td>532</td>
<td>591</td>
<td>750</td>
</tr>
<tr>
<td>燃料サイクル費(***pf/kWh)</td>
<td>0.47</td>
<td>0.54</td>
<td>0.54</td>
<td>0.32</td>
</tr>
<tr>
<td>電力コスト(***pf/kWh)</td>
<td>1.90</td>
<td>1.85</td>
<td>1.98</td>
<td>2.11</td>
</tr>
</tbody>
</table>

(*)負荷率を0.7とする

(**)価格は1970年の基礎。1 DM＝100円＝0.27ドル 1 pf＝0.01 DM

-6-
以上の結果、いずれの炉型のGCFRもLMFBRに匹敵する経済性を有するが、なかでもGGAコンセプトは、実現に要する開発努力が最小である。と結論された。Pu インベントリ－は、β型燃料では 3.2 〜 2.5 トンであるが、もし炭化物燃料が実現されれば 1.6 トンまで減少できる。被覆粒子燃料を用いれば、UO2 でもすでに 1.8 トンまで減少できる。しかし、Pu インベントリーが大きいにもかかわらず、GGA コンセプトによれば、LMFBR より短かいい倍増時間を実現できる。ガスタービンを用いる方式は、あまり大きなメリットがない。これは、ガス温度が現在のところまだ低いためである。

このような経過をへて、現在のところ GGA コンセプトによる GCFR が、来国のみならずヨーロッパにおいても、実現への最大距離にある。なおこれには、他にも以下のような経緯があった。すなわち、カルスクール－（GFK）・コンセプトにおいて、被覆材の材料と目されていたパナジウムが、高温下で不溶性分布のあるところでは UO2 に酸化されることはわかった。したがって、パナジウム被覆は U レッド燃料のみ独立しろうと考えられ、現在は、この方向で開発が進められている。

他方、U K A E コンセプトについては、その増殖比が非常に低いことが最大の難点であるために、各国の共同作業においては、74 〜 75年ころから第一期の重点はおかれてなくなった。

1960年代における日本のGCFRの研究としては、科学技术庁の委託による川崎重工の望月ら[9]の解析がある。ここでは、燃料ベレット外径や炉心高さなどをパラメータにして、核熱特性やPu インベントリー、増倍時間などが調べられた。

2.2 現在の開発体制

GBRAは、設立以来 1000 MWe 級の実用規模のGCFRの設計評価を行なってきた。検討された炉型は 4つで、

<table>
<thead>
<tr>
<th>炉型</th>
<th>冷却ガス</th>
<th>燃料</th>
<th>压力（MPa）</th>
<th>入口／出口温度（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBR-1</td>
<td>He</td>
<td>β型燃料</td>
<td>12</td>
<td>260／587</td>
</tr>
<tr>
<td>GBR-2</td>
<td>He</td>
<td>被覆粒子</td>
<td>12</td>
<td>260／700</td>
</tr>
<tr>
<td>GBR-3</td>
<td>CO2</td>
<td>被覆粒子</td>
<td>6</td>
<td>260／650</td>
</tr>
<tr>
<td>GBR-4</td>
<td>He</td>
<td>β型燃料</td>
<td>9</td>
<td>260／565</td>
</tr>
</tbody>
</table>

である。すなわち、GBR-1、2、3 の比較を行なった結果、増倍時間は GBR-1 で 13.1 年、GBR-2 で 16.2 年、GBR-3 で 15.8 年となり、やはり被覆粒子による炉型では、増倍時間が明らかに低かった。
長くなることが見出された。これは、西独のガス増殖炉メモランダムと一致する結論である。
その後GBRの設計は、He冷却ビン型燃料のGBR－4に集中されている。この成果については後に述べる。

西ドイツにおける開発は、カールスルーヘ（GfK）、ユーリッヒ（KFA）の両研究所と、民間企業であるKWUの協力のもとに行なわれている。主要な活動としては、ユーリッヒがKWU
とカールスルーヘの協力のもとにベルギーのMolで行なっているペンタ燃料の照射実験と、
KWUとカールスルーヘが協同して行なっている1000MWeGCFRの設計と安全研究がある。
以上のように、カールスルーヘでは、粗面燃料の伝熱や流体力学的研究や、コアキャッチャーの
研究を独自に行なっている。これらの詳細については、次章で述べる。

国際的には、KWUと米国のGA社の間に一般的な情報交換の協定があり、この他にカールス
ルーヘ、KWU、GAの三者間に安全性に関する情報交換が行なわれ、ユーリッヒ、KWU、GAの
間にはMolでの照射実験についての協定がある。

米国における開発は、GA社が中心となり、これにORNLとANLが協力する形で行なわれてき
た。GA社の設計による300MWe原型炉が実現への段階に入っているのは、本報の冒
頭に述べたとおりである。GA社はスイスの原子力研究所（EIR）との協力による粗面燃料の
伝熱実験や、カリフォルニア大学における流れのモックアップ実験を行なっている。また、
ANLのZR－9では、原型炉炉心に関する各種の臨界実験が行なわれた。この他、GA社に
おいて各機器の開発試験も進行中であり、これらについても後に述べる。

東京においては、ビューレンリンダム（EIR）で粗面燃料棒の伝熱実験が行なわれており、
また現在も直接サイクル・He タービンに関心を持って開発が行なわれている。この他、英国
では燃料関係の研究が、スウェーデンではPCRVの開発が進んでいる。わが国では、原研にお
いて、炉心核特性に関する評価研究と、伝熱に関わる若干の研究を行なっている。
3. GC FRの熱・流体工学上の概要

3.1 GC FRの熱・流体工学上の特徴

Heの冷却材としての特徴をFortescueによる分類を参考にして列挙すると、以下のようである。

(1) つねにガス状で相変化のないこと。
(2) 中性子の吸収と減速が小さいこと。
(3) 化学的に不活性で、かつ放射化されないこと。
(4) 透明であること。
(5) 核心から完全に失なわれることはないこと。
(6) 熱容量が小さいこと。
(7) 熱伝導率が液体に比べて小さいこと。

このうちまずHeの冷却材としての難点と考えられる(6), (7)については、Heで高速炉の冷却が可能であるか、またなぜ加圧しなければならないかを検討する。

Heの冷却材としての難点は、一般には、「除热能力が悪いこと」と表現されているが、その内容については必ずしも明確に把握されていないことが多いである。すなわち、除熱は二つの段階に分けて考える必要がある。その第一は燃料からHeへ熱が伝えられる熱伝達の段階であり、その第二はHeへ伝えられた熱を炉外へ輸送する段階である。以下にみるように、Heの冷却材としての難点は、第一よりむしろ第二の熱輸送の段階にあるといえる。以下では、これらの点について、GC FRをPWRやLMFBRと比較してみる。

熱伝導率が小さいこと

Heの熱伝導率は、水やNaに比べて小さく、したがって熱伝達率も小さい。Heの熱伝導率を水やNaと比較し、実際の原子炉における熱伝達率や熱流束の代表的な値を比較したのが表3である。

表3 各種炉型の熱伝達率や熱流束の比較

<table>
<thead>
<tr>
<th>冷却材</th>
<th>炉型</th>
<th>熱伝導率</th>
<th>熱伝達率</th>
<th>熱流束</th>
<th>境界温度差</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>HTGR</td>
<td>0.003</td>
<td>~0.13</td>
<td>~1.5</td>
<td>120</td>
</tr>
<tr>
<td>He</td>
<td>GCFR</td>
<td>0.003</td>
<td>0.8</td>
<td>~1.0</td>
<td>120</td>
</tr>
<tr>
<td>H2O</td>
<td>PWR</td>
<td>0.0066</td>
<td>~2.8</td>
<td>~5.3</td>
<td>19</td>
</tr>
<tr>
<td>Na</td>
<td>LMFBR</td>
<td>0.70</td>
<td>~1.5</td>
<td>~14.0</td>
<td>9</td>
</tr>
</tbody>
</table>

表3で熱伝達率を比較すると、GCFRの値はLMFBRの約20分の1である。しかしこれを熱流束で比較すると、LMFBRの値と大差なくなる。これは、ヘリウム冷却炉では境界温度差を大きくとること、およびGCFRでは粗面燃料棒を採用していることによる。もっと
ともこれらの熱流量の値は、熱伝達の限界のみから定められている訳ではないが、GCFRでもLMFBRと同程度の熱流量が得られることは確認できる。

一般に燃料棒表面における熱伝達率は大きいほど良いと考えられるが、燃料棒の内部に温度分布が発生することは避けがたいから、熱伝達率をいくら大きくしてもそれによって熱負荷を大きくとると訳ではない。また、熱伝達率の高い冷却材は、必ず大きな熱衝撃の発生する可能性をもたらす。これは現に、LMFBRで重要な問題となっている。

熱容量が小さいこと

He の単位重量あたりの比熱 \(c_p \) (kJ/kg K) は \(H_2O \) や Na と比して小さい。しかし、実際には単位体積あたりの熱容量 \(\rho c_p \) (kJ/m³ K) であって、He, \(H_2O \), Na について比較すると表 4 のとおりである。

<table>
<thead>
<tr>
<th>冷却材</th>
<th>気圧 (bar)</th>
<th>温度 (°C)</th>
<th>(\rho c_p) (kJ/m³ K)</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1</td>
<td>600</td>
<td>0.286</td>
<td>1/50</td>
</tr>
<tr>
<td>He</td>
<td>50</td>
<td>600</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>87</td>
<td>300</td>
<td>4100</td>
<td>280</td>
</tr>
<tr>
<td>Na</td>
<td>1</td>
<td>500</td>
<td>1100</td>
<td>75</td>
</tr>
</tbody>
</table>

このように、He の \(\rho c_p \) は \(H_2O \) や Na の \(\rho c_p \) に比して非常に小さい。したがってヘリウム冷却炉では冷却材を加圧させざるを得ず、通常 HTGR では 50 気圧、GCFR では 90 ～ 100 気圧に加圧する。

表 4 によれば、He を 50 気圧に加圧したとしても、\(\rho c_p \) の値については \(H_2O \) や Na に比してなお 100 倍程度の差がある。しかし実際の炉心からの熱エネルギーについては、この値ほど大きな差異はない。というのは、原子炉からの熱源をきめるのは \(\rho c_p \) ではなく、流速 \(u \) と炉心出入口温度差 \(\Delta T \) の積 \(\rho c_p u \Delta T \) である。表 5 にはこの熱輸送能を比較して示す。

<table>
<thead>
<tr>
<th>炉型</th>
<th>冷却材熱容量</th>
<th>出入口温度差</th>
<th>流速</th>
<th>熱輸送能</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTGR</td>
<td>142</td>
<td>~370</td>
<td>~50</td>
<td>(2.6 \times 10^4)</td>
<td>0.5</td>
</tr>
<tr>
<td>GCFR</td>
<td>28</td>
<td>~250</td>
<td>~80</td>
<td>(5.6 \times 10^5)</td>
<td>1</td>
</tr>
<tr>
<td>PWR</td>
<td>4100</td>
<td>~30</td>
<td>~4</td>
<td>(4.9 \times 10^4)</td>
<td>0.9</td>
</tr>
<tr>
<td>LMFBR</td>
<td>1100</td>
<td>~150</td>
<td>~6</td>
<td>(9.9 \times 10^4)</td>
<td>1.8</td>
</tr>
</tbody>
</table>

表 5 からわかるように、熱輸送能 \(\rho c_p u \Delta T \) についてみると、GCFR では、PWR と同等の値、LMFBR に比較しても半分以上の値が得られる。これはガス冷却炉では速度 \(u \) や出入口温度差 \(\Delta T \) が大きくとされることによる。この出入口温度差 \(\Delta T \) は、プラントの熱サイクルに依存するので、すべての炉型で限界値に達している訳ではないが、ヘリウム冷却炉でも他の炉型に比しやすい熱輸送能が得られがっことがわかる。但し、これはあくまで He を加圧した結果であって、低圧でのこの程度の熱輸送能を得ようとすれば、流速が許容しきれない値となる。他
方、高圧のガスを安全に格納する方法は、P C R V の開発によって急速に進歩したが、それでもなお高圧運転中の著変事故の可能性から完全に逃がることはできず、これがG C F R の設
計基準事故（D B A ）となっている。

ついて、他の(1)～(5)の特徴について、主に安全性の観点から検討を行なう。
相変化がないこと

極低温領域をのぞけばヘリウムは一見に気体であって、相変化をしない。相変化がないとい
うことの原子炉冷却材としての利点は、どんなに緊張してもすすぎることはない。それは、水
やナトリウムが相変化をするために、軽水炉やLMFBRの開発にいかに多くの努力が払われ
てきたかを考えれば明らかである。すなわち、沸騰にはバーンアウト現象が不可避であって、熱
伝達率が突然に劣化する。さらにLMFBRでは、沸騰の発生がチャンネル閉塞をひき起こすとも
考えられている。しかるにG C F R の場合には、これらの問題から完全に自由である。沸騰
におけるバーンアウト現象のような激しい熱伝達の変化の可能性はなく、熱伝達の変化は安定し
ている。

つぎに、燃料破壊にともなう激しい圧力発生の問題がある。PWRやLMFBRで出力過度の
際に破壊的な圧力波の発生があるとすれば、その原因は、冷却材中に飛散した高温の燃料から
激しい蒸気発生の生ずるためであろうと考えられている。しかし、G C F R では、燃料の破壊
が破壊的な圧力発生を伴うことはなく、設計者はこの種の破壊的な圧力発生についての考慮
をする必要がない。

相変化がないことの他の帰結は、ポイドによる反応度効果がないことである。たとえばG C F R
ではポイド係数が1以下になることはすでに述べたとおりである。またBWRにおけるよう
に、ポイドの消減による正の反応度印加の可能性もない。

しかし他方、出力過度時には、PWRやBWRにおけるようなポイドによる負の反応度効果
を期待することはできない。だがG C F R においても、主に燃料のドップラー効果によって、原
子炉は自己制御性を持っていることに変わりはない。

中性子の吸収と減速が小さいこと

Heの中性子吸収が小さいために、G C F R では、冷却材に起因する反応度事故の可能性は、
他の炉型に比して非常に小さい。また、G C F R ではLMFBRに比して約0.2大きな増殖率を得
ることができる。

Heの中性子吸収や減速が小さいことの他の利点は、核設計と熱・流力設計が比較的独立に
行える点にある。たとえとして燃料棒群の配列ピッチと直径の比P/dをとると、LMFBR で
はP/dは主として核設計の要請から1.2～1.3という小さな値におさめられていて、非常に密
な配列になっている。他方G C F R ではP/dは主として熱・流力設計できめられ、P/d＝1.4～
1.5という比較的大きな値が許される。また元来G C F R の燃料棒の方がやや太いこともあって,
燃料棒間の間隔はG C F R の方がLMFBRに比して非常に大きい。燃料棒の変形や流路閉そ
くの可能性を考えると、P/dの値を大きくして燃料棒間の間隔を大きくとれる方が安全上望ま
しいことはいうまでもない。
放射化されず、化学的不活性であること

He は透明であり、またほとんど放射化されない。これらの性質のために、炉心部以外の機器への接近は比較的容易であり、保守、点検を容易にしている。また He は化学的に安定で、他の物質と反応しない。したがってたとえ熱交換器にリークが生じても、LMFBR におけるような激しい即発的な化学反応を伴うことのない利点がある。したがって、GCFR では中間熱交換器を必要としない。

炉心から完全に失われないこと

原子炉の設計では、かななり冷却材が失われた場合を想定しなければならない。このとき、定格状態における熱伝達率が大きければ大きいほど、冷却材が失われた場合の熱伝達率の度合は大きい。たとえば PWR や BWR では、炉心から冷却水が失われた場合、ただちに何らかの方法で新たな冷却水を炉心に導入しない限り崩壊熱をも除去することはできない。しかし GCFR では、圧力事故の際にも格納容器内にある程度の残留圧が残るよう設計できるから、炉心から冷却材がまったく失われることはないと考えている。しかも事故時の熱伝達の効果の度合は小さいので、GCFR では、新たな冷却材を注入しなくても残留圧のみでも、炉内の強制循環さえ確保すれば崩壊熱を除去できる。

以上の議論をまとめると、GCFR の熱・流体工学上のきわだた利点は、相変化のないことであり、難点は He の熱容量が小さいために加圧させて余すをえず、そのため減圧事故の可能性が避けられない点にある。しかし元来、実用炉であって冷却材が失われても、何らの対策をとろうじょうでも炉心が健全であるといった原子炉は存在しないから、この点についても、GCFR が他の炉型に比してとくに不利な条件にあるとはいええない。

3.2 GCFR の炉心設計

現在のところ、GBRA、GfK（カルスルーエ）／KWU、GA 社によって三つの独立な設計が行なわれている。これらはすべて、ビン燃料、スチームサイクルによる GA コンセプトに基づくものである。

図 1、2 は、それぞれ GBRA と GfK／KWU による 1000 MWe 級商用炉の設計である。図 3 には、GA による 300 MWe 原型炉を、図 4 にはその完成予想図を示す。これらの設計ではいずれも、主要な機器はマツドキャビティ型の PCRV の中に格納されている。PCRV は、中央に炉心をおさめその周囲に主蒸気発生器や緊急冷却用の熱交換器を配置する形となっており、
「電流ダイヤル型」と呼ばれるものである。主循環機は、主蒸気発生器と同じキャビティ内に置かれている。
これらの設計の主要諸元を表 6 に示す。
表6 GCFSの主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>GA</th>
<th>GfK/KWU</th>
<th>GBRA（GBR-4）</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気出力 MWe</td>
<td>300</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>He圧力 MPa</td>
<td>8.9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>He入口温度 ℃</td>
<td>322</td>
<td>273</td>
<td>260</td>
</tr>
<tr>
<td>He出口温度 ℃</td>
<td>550</td>
<td>555</td>
<td>560</td>
</tr>
<tr>
<td>炉心高 m</td>
<td>1.0</td>
<td>1.48</td>
<td>1.4</td>
</tr>
<tr>
<td>炉心体積 m³</td>
<td>3.14</td>
<td>10.2</td>
<td>16.4</td>
</tr>
<tr>
<td>最高沸出力 W/cm</td>
<td>490</td>
<td>492</td>
<td>400</td>
</tr>
<tr>
<td>被覆中央最高温度 ℃</td>
<td>700</td>
<td>700</td>
<td>720</td>
</tr>
<tr>
<td>プラント正味効率 %</td>
<td>36</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>増殖率</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>増倍時間 yr</td>
<td>12</td>
<td>11.8</td>
<td>11.8</td>
</tr>
</tbody>
</table>

これらの設計における大きな差異は、炉心の支持方法と炉心内のHe流の方向にある。すなわち、GfK/KWUとGA社の設計では炉心を上部からつり下げ、Heを炉心内で下向きに送るのに対し、GBR-4では炉心を下部で支持し、Heを上向きに送る。前者を「つり下げ型炉心」、後者を「自立型炉心」と呼ぶこととする。

GA社のつり下げ型炉心では、一つ一つの燃料要素を一枚のグリッドプレートからつり下げ、下端は完全に自由になっている（図5参照）。炉心の荷重を受けるグリッドプレートの温度をできるだけ低く保つためには、He流を下向きにせざるを得ない。この型式では、万一燃料の溶融が生じても、炉心の下部には何も拘束物がないために、燃料は炉外へ落下することが期待できる。しかし、He流の強制循環が全く失われた場合には、浮力をよってHe流が上向きに逆流すると考えられ、この場合、一たん流速がゼロをよぎることによる熱伝達の劣下、グリッドプレートの温度上昇などの問題が生じる。

GBRAの自立型炉心では、7個つつの燃料要素を1つのビラーと呼ばれる支持棒の上に立て、図6にGBR-4のビラーを示す。この型式ではHe流が炉心内で上向きになるため、強制循環が失われても自然循環時にHe流が逆流することはない。しかし、万一燃料の溶融が生じた場合には、溶融燃料は炉心支持構造物のある方向へ落下する点が大きな問題である。このためGBR-4ではビラーに水冷機構を設けている（図6）。しかし、この設計の根本には、炉心の溶融はいかなる場合にも起こらないとする考えがあると見るべきであろう。以上の議論をまとめて表7に示す。
表7 炉心支持方式の比較

<table>
<thead>
<tr>
<th>支持機構位置</th>
<th>つり下げ型炉心</th>
<th>直立型炉心</th>
</tr>
</thead>
<tbody>
<tr>
<td>供給方向</td>
<td>下部</td>
<td>上部</td>
</tr>
<tr>
<td>加燃料</td>
<td>上部より</td>
<td>下部より</td>
</tr>
<tr>
<td>自然対流時のHe流</td>
<td>上部より</td>
<td>上部より</td>
</tr>
<tr>
<td>坍陥燃料と支持機構の接触</td>
<td>可能性小</td>
<td>可能性大</td>
</tr>
<tr>
<td>坍陥燃料による反応度変加</td>
<td>比較的容易</td>
<td>比較的困難</td>
</tr>
</tbody>
</table>

次節以降には、GA社300 MWe原型炉を中心にして、炉心部要素の特徴や主要諸元について概説する。

3.3 燃料棒および燃料要素

GCFRの燃料棒および燃料要素は、LMFBRのものと非常に類似している。主な差異は
(1) 燃料棒直径と配列ピッチが大きいこと
(2) 粗面の採用
(3) グリッド型スペーサー
(4) 核分裂生成ガスをベントする型であることの四点である。

300 MWe原型炉の燃料要素の設計は、GAとKWUが共同で行なった。燃料要素の概観図を図7に示す。各部の燃料要素には264本の燃料棒が含まれており、さらに六角形要素壁の各々の角には一本づつ支持棒が、中央には一本の計装棒が置かれている。燃料要素上部には、要素をグリッドプレートに固定するためのロック機構と、核分裂生成ガスのベント機構がある。さらにこの図には線かれていないシールドがあって、グリッドプレートへの放射線照射を減少させている。表8には燃料要素の主要諸元を示す。

表8 300 MWe原型炉の燃料要素

<table>
<thead>
<tr>
<th>燃料要素</th>
<th>燃料棒（支持部を除く） (㎜)</th>
<th>燃料棒（本）</th>
<th>支持棒（本）</th>
<th>計算棒（本）</th>
<th>燃料棒ピッチ (㎜)</th>
<th>長さ (㎜)</th>
<th>外径（粗面根本） (㎜)</th>
<th>外径／内径</th>
<th>被覆厚 (㎜)</th>
<th>燃料棒長さ (㎜)</th>
<th>軸方向ブランケット長さ (㎜)</th>
</tr>
</thead>
<tbody>
<tr>
<td>方向</td>
<td>335</td>
<td>264</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>2100</td>
<td>7.2</td>
<td>1.15</td>
<td>0.48</td>
<td>1000</td>
<td>450</td>
</tr>
</tbody>
</table>
図8は、燃料棒を模様的に示す図である。燃料は、（U-Pu）O₂のベレットで、316S.S.
製被覆中に納められている。上下ブランケット部は、劣化UO₂ベレットより成る。燃料部分の
長さは1000mmであるが、そのうち下部765mmを粗面とし、熱伝達を向上させている。全
部を粗面としないのは、圧力損失をできる限り増加させないためである。燃料棒上部には、核
分裂生成ガスのトラップとベントのための機構がある。

3.4 ベントシステム（PES）

核分裂生成ガスのベントシステムは均圧システム（PES）とも呼ばれ、GCFR燃料の特色
の一つである。このシステムを示す理由は、燃料の照射の初期に外圧による燃料被覆材のク
リープ・コラプスを防ぎ、照射後の後期に核分裂生成ガスの増加による被覆材のラブチャーを防
止するためである。その結果として、被覆材を薄くできること、核分裂ガスの急速な放出が防
げること、破損燃料の検出が可能であること、などの付加的な利点がある。

ベントシステムの概要を図9に示す。燃料要素は、図9左側に見られる特殊な機構でグリッ
ド・ブレートを接続されている。この部分のグリッドブレートの小穴には、燃料内に発生した
核分裂ガスと、燃料要素間のすき間から流れる少量のヘリウムとが混合して流れ込む。この混合
ガスは、モニター及び精製装置を通じて循環機の吸入口に戻される。

このベントシステムはLMFBR燃料にはなくてGCFRに固有のシステムであるから、これ
については十分な実証試験が必要であると考えられている。そのため、ORNLではすでにベ
ント型燃料棒の照射試験が完了し、ついてCA、ニューリッチ、KWUの協力のもとにベント型
燃料要素（12本クラスター）の照射試験計画が進行中である。これについては、項を改めて述べ
べる。

3.5 ヘリウム循環機

主ヘリウム冷却系統用のヘリウム循環機は、単段の軸流圧縮機型で、駆動用の蒸気タービン
と同一軸上に直結されている。図10は、その概念図である。300MWe原型炉には三つの冷
却系統があるので、この循環機も三台設置され、各々その系統の全蒸気流量によって駆動され
る。

主循環機には、水蒸気のベアリングと潤滑制御型のシールが用いられている。潤滑材に油で
なく水を用いている理由は、水の方がHeや水蒸気と共存性が良く、シール機構が簡単化され
るためである。

GCFR用のHe循環機はHTGR用のものと類似しているが、いくつかの特徴もある。そ
れらは、Heの補給が高くなること、原子炉の停止中も安定した運転が要求されることである。
原子炉停止中には、補助ボイラからの水蒸気が供給される。表9には、300MWeGCFR
用主循環機の諸元を、Ft St Vrainのそれと比較して示す。
表 9 ヘリウム循環機の諸元

<table>
<thead>
<tr>
<th></th>
<th>300 MWe GCFR 原型炉用</th>
<th>Ft St Vrain 330 MWe 用</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数 (rpm)</td>
<td>117,000</td>
<td>9,550</td>
</tr>
<tr>
<td>入力 (kW)</td>
<td>15,660</td>
<td>3,880</td>
</tr>
<tr>
<td>He流量 (kg/s)</td>
<td>234</td>
<td>110</td>
</tr>
<tr>
<td>压縮機直径, ハブ (m)</td>
<td>0.57</td>
<td>0.46</td>
</tr>
<tr>
<td>チップ (m)</td>
<td>0.72</td>
<td>0.69</td>
</tr>
<tr>
<td>He圧力, 入口/出口 (MPa)</td>
<td>8.62/8.90</td>
<td>4.73/4.82</td>
</tr>
<tr>
<td>温度 (℃)</td>
<td>310</td>
<td>395</td>
</tr>
<tr>
<td>水蒸気入荷温度 (℃)</td>
<td>469</td>
<td>392</td>
</tr>
<tr>
<td>入口圧力 (MPa)</td>
<td>2.00</td>
<td>5.90</td>
</tr>
<tr>
<td>流量 kg/s</td>
<td>111</td>
<td>70</td>
</tr>
</tbody>
</table>

主循環機の出口、すなわち炉心部入口には、主循環機が停止した際、この弁が閉じて He の逆流を防ぐためのものである。機構は簡単であるが高い信頼性が要求されるので、実証試験が計画されている。その他、シールや潤滑についても開発試験が予定されている。

なお、GBAで設計している GBR-4 では、循環機は電気駆動になっている。これは、原子炉のコミッションング時に炉内の流体振動を調べるために、フル流量の冷却ガスを流すためである。

3.6 主蒸気発生器

300 MWe 原型炉用の主蒸気発生器は三基あり、図 3 のように炉心の周囲に配置される。図 11 には、主蒸気発生器のフローシートを示す。He は上から下方へ、水は下から上方へ流れ、上向流沸騰が生ずるよう設計されている。水蒸気は過熱器を出たのちヘリウム循環機を駆動し、その後再過熱されたのちタービンへ至る。

最近の情報によれば、再過熱器を除去しても、蒸気-蒸気の再熱器で置き換える方法が検討されている。これによってプラント効率は 37.7%から 36.9% に落とされるが、蒸気配管の簡略化、PGRV の寸法の減少などの効果が大きい。最終的な決定は未だなされていない。

表 10 には、300 MWe 原型炉用主蒸気発生器の諸元を、Ft St Vrain と比較して示す。HTGR用のもと比較すると、He 及び水蒸気の圧力が高い点、及び、炉停止後にも作動しなければならない点に特徴がある。原子炉のシャットダウンの際には、水蒸気流量は直ちに減少される。これは蒸気発生器が急激に冷却されることを防ぎ、蒸気発生器の熱容量を利用して崩壊熱を除去し、かつその蓄熱によってその後しばらくの間ヘリウム循環機を駆動するためである。このため GCGR 用蒸気発生器には低流量で安定した沸騰の生ずることが要求され、この点に注する試験が計画されている。

表10 主蒸気発生器の諸元

<table>
<thead>
<tr>
<th></th>
<th>300 MWᴇ GC FR 炉用</th>
<th>Ft. St. Vrain 330 MWᴇ HTGR用</th>
</tr>
</thead>
<tbody>
<tr>
<td>モジュールあたり熱出力（MW）</td>
<td>291</td>
<td>702</td>
</tr>
<tr>
<td>He圧力（MPa）</td>
<td>8.65</td>
<td>4.76</td>
</tr>
<tr>
<td>*入 口 温 度（℃）</td>
<td>550</td>
<td>775</td>
</tr>
<tr>
<td>水蒸気 過熱器出口圧力（MPa）</td>
<td>20</td>
<td>17.3</td>
</tr>
<tr>
<td>* *出口温度（℃）</td>
<td>469</td>
<td>538</td>
</tr>
<tr>
<td>再過熱器圧力（MPa）</td>
<td>8.86</td>
<td>4.14</td>
</tr>
<tr>
<td>* *出口温度（℃）</td>
<td>498</td>
<td>538</td>
</tr>
</tbody>
</table>

（※）Ft. St. Vrainにおいては再熱器
4. GCFRの熱・流体設計

4.1 粗面の熱伝達

GCFR燃料の熱伝達上の特徴は、粗面を採用している点にある。これによって熱伝達率が増加し、伝熱面積を減少させることができる。粗面は、燃料部分の下部約4分の3に取付けられる。図12は、300 MWe装置で現在使用されている粗面のパターンである。これによって、熱伝達率は平滑面の約2.3倍、摩擦係数は約4.4倍になる。粗面要素の高さは約0.1〜0.2mmで、図3は、ガス炉に従来用いられていたものよりも非常に高い。この種の粗面について熱伝達率および流動抵抗を求めるには、GCFR開発の初期から重要な課題と考えられ、OA社とイスノ基材研究所（EIR）が協力してこれにあたり、西独エネルギー研究所でも独自に研究が行なわれた。

イスノEIRでは、粗面要素のプロフィルおよびその製作方法の影響が調べられた。図13はその結果の一部である。図のたて軸のMULTIPLIER St, f, は、スタット数や摩擦係数の粗面と平滑面における比の値である。

製作法としては、化学的エッチングによる方法と、機械加工による方法が試みられた。一般にエッチングによる方法では、寸法精度の再現性が悪く、一部に二次粗さ、すなわち仮想したプロフィルの上にさらに細かい凹凸が生じた。また、粗面加工後にクリーパ破断強度の劣下が生じることがあった。他方機械加工した粗面では、寸法精度も良く、クリーパ強度の劣下も見られなかった。

粗面の特性としては、熱伝達率の増加に伴って摩擦抵抗の増大が小さい方がよい。そこで

\[\frac{St}{f} \] という比が粗面の性能を表す指標として用いられる。この指標について言えば、機械加工による粗面より、一部の化学的エッチングによるものの方が良い結果を示した。これは、前述の二次粗さのためであろうと考えられた。しかし、このような二次的な微少な粗さは長時間の運転中に失われ収める可能性があるので、この効果に期待するのは危険であると考えられる。そこで現在では、機械加工による方法が採用されようとしている。

西独エネルギー研究所では、粗面要素の高さ(h), 巾(b), ピッチ(p)などをパラメータとして、熱伝達率や摩擦損失の測定が大規模に行なわれた。Dalle Donne は、その結果をつぎのようにまとめた。すなわち、粗面のスタット数Stおよび摩擦係数 f R は、次式で与えられる。

\[
St = \frac{f R / 2}{1 + \sqrt{f R / 2} \left[G(h^+) - R(h^+) \right]}
\]

\[
\frac{f R}{2} = 2.5 \ln \frac{r_0 - r_1}{h} + R(h^+) - 3.75 + 1.25 \left(\frac{r_0}{r_1} \right)
\]

ここでr_1は燃料半径, r_0は燃料棒周辺の単一セルの等価半径, h^+ = hu^*/v, u^*はマックスウェル

-18-
速度、νは流体の動粘性係数である。R(h⁺)は平滑面に対しては

\[R(h^+) = 2.5 \ln h^+ + 5.5 \]

となる変数である。GCFRに用いられるような粗面については

\[R(h^+) = R(\infty) + 0.4 \ln \left(\frac{h}{r_1} \right) + \frac{5}{0.01 (r_o/r_1 - 1)} \left(\frac{T_w}{T_B} - 1 \right)^2 + \frac{5 100}{h^{3.5}} \]

ここでT_w, T_Bは壁温およびバルク流体温度で、R(∞)は次式で与えられる。

\[R(\infty) = 9.3 \left(\frac{p-b}{h} \right)^{-0.73} - \left[2 + \frac{7}{(p-b)/h} \right] \log_{10} \left(\frac{h}{b} \right) \quad 1 \leq \frac{p-b}{h} \leq 6.3 \]

\[R(\infty) = 1.04 \left(\frac{p-b}{h} \right)^{-0.46} - \left[2 + \frac{7}{(p-b)/h} \right] \log_{10} \left(\frac{h}{b} \right) \quad 6.3 \leq \frac{p-b}{h} \leq 160 \]

つきにG(h⁺)は

\[G(h^+) = G^* \cdot Pr \cdot \left(\frac{T_w}{T_B} \right)^{0.5} \left(\frac{h}{r_1} \right)^{0.053} \left(\frac{h}{r_o/r_1 - 1} \right) \]

であり、G*は

\[G^* = [3.0 + 0.3 R(\infty)] \cdot h^+ (0.32 - 0.017 R(\infty)) \]

を与えられる。以上の整理式は

\[2 \leq (p-b)/h \leq 20, \quad 0.25 \leq h/r_o \leq 2, \quad 0.008 \leq h/(r_o/r_1 - 1) \leq 0.235 \]

の範囲で成立する。

一般に、粗面を用いれば熱伝達率は増加するが、それ以上に摩擦係数も増大するので(図13)，必ずしも有益な結果をもたらさないように見える。しかし元来、循環機に貴される動力は全出力の10%程度であり、しかも粗面部分における圧力損失はその半分程度であるのに対し、熱伝達率の向上によって冷却材出入口温度を上昇させれば、全出力を直接的に増加させることができる。したがって、動力用の粗面は、たとえ摩擦損失をある程度増大させても、高い熱伝達を与えるものが有利であるといえる。このような考えで、カーレル・スリーエでは、表面に多数の突起を密に並べた形式の新しい粗面が検討され、実験されている。

4.2 圧力損失

表11に、300MWe型圧力容器における圧力損失の配分を示す。粗面部分の圧力損失は全体の約半分を占める。スパネによる圧力損失も比較的大きい。なお、燃料要素全体での圧力損失が約290kPaであるのに対し、原子炉全体の一階の圧力損失は約370kPaである。
表 11 300 MWe 原型炉用燃料要素における圧力損失

<table>
<thead>
<tr>
<th>入口部分</th>
<th>△P (kPa)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料部</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平滑部（入口）</td>
<td>11.9</td>
<td>4.3</td>
</tr>
<tr>
<td>粗面部</td>
<td>15.9</td>
<td>5.4</td>
</tr>
<tr>
<td>平滑部（出口）</td>
<td>30.2</td>
<td>1.0</td>
</tr>
<tr>
<td>運動量変化</td>
<td>6.2</td>
<td>2.1</td>
</tr>
<tr>
<td>メスター</td>
<td>29.9</td>
<td>1.0</td>
</tr>
<tr>
<td>出口部分</td>
<td>22.9</td>
<td>7.8</td>
</tr>
<tr>
<td>合 計</td>
<td>291.5</td>
<td>100</td>
</tr>
</tbody>
</table>

4.3 炉心の熱設計

炉心の熱設計に用いられるホットスポットファクターは、流れ方向の冷却材温度上昇に関するファクター（F_c）と半径方向温度分布に関するファクター（F_r）に分けられる。300 MWe 原型炉の設計では、F_c = 1.289, F_r = 1.145 が用いられている。その内訳については文献に詳しい。

図14 は、最高温燃料チャンネルの流れ方向の温度分布で、ホットスポットファクターも考慮されている。燃料温度ならびに被覆材温度に段差が生じているのは、その部分から下流側のみに粗面が用いられているためである。

図15 は、燃料温度が最高部の半径方向温度分布である。これは入口から輸方向に約55%の位置にあたる。燃料バレットは中空になっている。燃料・被覆間の熱抵抗による温度降下は約175 K(°C)，被覆表面の蒸発温度降下は約125 K(°C)である。

4.4 蒸気サイクル

300 MWe 原型炉の蒸気サイクルを図16に示す。蒸気発生器を出た468°C, 20 MPa の蒸気は、主ヘリウム循環機を駆動して361°C, 9.3 MPa になった後、再過熱器で過熱され、495°C, 8.1 MPa の条件で主タービンに入る。プラント効率は37%である。なお前述のように、再過熱器を用いない設計が現在検討されている。
5. GCFRの安全性

GCFRの安全性の特徴は、冷却材であるHeの特性に起因する。すなわち、Heは相変化をせず、化学的に安定で、中性子吸収が少ない。これらの諸点についてはすでに3.1節で論じた。本章では、原子炉の設計に関連した安全性について述べる。

5.1 核的安全性

300 MWe型原発の核安全を対象として、各種の反応度増加のメカニズムが検討された。たとえば、Heが失われる減圧事故での反応度増加は0.55$であった。地震による反応度変化は振動的であって平均するとゼロになるが、原子炉の動特性の非線形性のために、約0.1$に等価な反応度増加となった。蒸気発生器の破損による水蒸気の混入は、むしろ負の反応度をもたらす。結果、単一の要因で1$以上の反応度を印加するものではないと結論された。

300 MWe型原発の原子炉停止機能は、二つの独立したシステムより成る。その一つは21本の制御棒であって、各々の制御棒は0.85$を持つ。これらは、原子炉の出力制御、バーンアップの補償に用いられているが、原子炉をトリップする際には、スプリングで加速されながら重力によって炉内に落下する。もう一つのシステムは、6本の炉停止専用の制御棒で、各々1.6$である。これらは常に炉心から引抜かれており、モーター駆動によって13cm/sで炉内へ挿入される。

5.2 残留熱除去システム

Heの冷却材としての特性はすでに3.1節で述べたとおりであるが、その最大の難点は単位体積あたりの熱容量が小さいことにある。そのため減圧時の自然対流には多くの除熱を期待できない。したがって、信頼できる残留熱除去システムを確立することが必須である。そこで300 MWe型原発には二系統の残留熱除去システムが設けられている。

その一つは、前述のように出力運転時の主蒸気発生器と主ヘリウム循環機を用いるもので、主蒸気発生器の熱容量が利用される。

もう一つのシステムは補助冷却系である。このフローダイヤグラムを図17に示す。系統は、補助循環機、補助熱交換器、補助空気冷却器、および系統分離弁よりなる。補助熱交換器からの除熱は、非蒸発加圧水によって行なわれる。この系統は独立に三系統あり、各系統は出力の2%を除熱できる。補助冷却系は常にホット・スタンドパイの状態にあり、必要な場合には2分以内で起動できるなければならない。

図18は三つの運転モードを示すフローチャートである。図の最上段は、通常の出力運転の状態である。中段は原子炉停止後、主冷却系で冷却を行なっている状態である。このとき、主蒸気発生器へのフィードバックの供給がなくとも蒸気発生器の熱容量だけで、15分間は主循環機
を運転できる。フィード水の供給があれば、1時間は運転できるが、それ以後は炉出力の低下のために蒸気発生量が十分でなくなるので、補助蒸気発生器からの蒸気が供給される。この状態が最下限に示されている。

主冷却系に障害が生じた場合には、直ちに補助冷却系が起動される。この場合には三系統のうち二系統で崩壊熱を除去できる。図18に示すような段階を上から下へ順に経て補助冷却系統へ移行する場合には一系統でも十分である。

5.3 大型炉の安全解析

GCFRの安全解析は、いくつかの機関で行われているが、ここでは、カールスルーエ (G f K) とKWUの協同による1000 MWe商用炉の安全解析について述べる。

解析の対象は、図2に示した1000 MWeのGCFRである。この原子炉のPCHRについて、各種のプラグシェールが破損した場合の減圧事故について検討がなされた。大きなプラグが破損すれば、もちろん減圧の速度も速く、かつ燃料被覆が経験する最高温度も高い。図19は、各種のプラグの破損について、減圧速度の時定数と燃料被覆材の最高温度の関係を示したものである。考えうる最も速い減圧は蒸気発生器プラグの破損によって生じ、その時定数は100 secである。これが、この原子炉の設計基準事故 (DBA) である。しかしこのときの燃料最高温度は約840℃で、許容値1200℃より十分低い。

この場合の被覆材温度の時間変化を図20に示す。コンタナ内の残留圧 (最終圧) が2 barと3 barの場合について、計算が行われている。この計算では、事故発生後原子炉は直ちに停止され、8系統ある冷却系はすべて作動しており、かつ循環機の回転スピーが一定としている。図20によれば、被覆材温度は事故発生後一度低下するが、これは炉停止による急激な出力低下のためである。その後炉内の圧力が低下するに従って冷却能力が落ちるため、被覆材温度は上昇する。しかし廃熱発生は減少し続けるので、その後被覆材温度は再び上昇する。

実際の事故時の操作では、炉停止後直ちに循環機の回転数を低下させる。これは被覆材温度の急激な低下を避ける、不要な熱衝撃を受けないようにするためである。図21は、この経過を示す計算例である。なお、これには減圧事故発生後10 sec間の炉停止の遅れも仮定されており、この間に被覆材温度は約30℃上昇する。

以上の例では8系統の冷却系はすべて健全であると仮定した。この内何個かが作動しないと仮定した場合の被覆材最高温度が、図22に示されている。8系統の内2系统が作動しないとすると、被覆最高温度は約60℃高くなる。被覆材温度が許容値1200℃を越えるには、8系統のうち5系統が故障しなければならない。

5.4 強制循環の喪失と炉心溶融

GAやGfK/KWUの設計によるGCFRでは、炉心での冷却材流れは下向きである。このような設計では、強制循環がなかった場合には流れの逆転が生ずる。カールスルーエで開発されたPHAETON2は、このような流れの逆転や自然対流のみによる循環をも取扱えるコードで
ある。図23はこのコードによる計算結果の例で、8台のヘリウム循環機がすべて動力を失った場合の燃料被覆温度とHe流量の時間変化を示す。流量が急激にゼロにならないのは循環機の慣性をも考慮しているためで、循環機がほとんど停止するとHe流に逆転が生じている。なおこの計算では、PCRVは健全であること、主He循環機の隔離弁は止まなかったと仮定している。計算結果によれば、流れる逆転速度は速かに生ずるので、流量がゼロを切る際にに配された被覆材温度の上昇は小さい。

米国では、炉心の破壊に至るような仮定的な事故について、その発生確率が検討された。その結果はのに述べるように、炉心破壊の確率は十分に小さいことを示したが、しかしこの結果の事故の物理過程と対策を検討することが重要と考えられている。

炉停止後全く冷却系が停止したと仮定した検討によれば、流量が定常値の2％まで減少するとまず被覆材の融解が始まる。消えた被覆材下部ブランケットへ落下するが、ここで再び固化して冷却プロックするかも知れない。熱にたい燃料ベレットは温度上昇を続けるが、同時に熱放射と伝導で熱が放出され続けるので、六方形の燃料要素壁が加熱される。伝熱計算によれば、燃料ベレットが融解するよりも要素壁が融解に達する方が早いか。燃料要素の下方には何も構造物はないう状況になっているので、要素壁が溶ければ燃料要素は炉心キャビティの下床まで落下し、炉心の反応度を減少させることが期待される。

実際には燃料被覆の6個の角には支持棒があるため（図24(b)参照）事情はやや複雑である。この支持棒（The Rod）までも考慮し、各部分が融点に達する時間を比較したのが図24(a)である。これでもなお、燃料ベレットが融点に達するよりも早く支持棒が溶けており、燃料が溶融して炉心内に再発着する前に燃料要素全体が溶融すると考えられている。

以上のように各部が自由に落下すれば、制御棒や燃料の溶融による炉心レベルでの再発熱事故は発生しないと考えられる。現状、初期に溶けたステンレスが下部ブランケットに固着したり、燃料要素が接触して一体化する可能性もあるため、実験的な研究が必要とされている。この種の実験が現在ANLを中心に計画されている。

5.5 コア・キャッチャー（PAFC）

前節に議論したように燃料ベレットが溶融せずに落下するとしても、落下後崩壊熱で溶融する。そこで燃料とステンレス構造材からなる溶融物を、炉心キャビティの下床で安全に受け止め、冷却しなければならない。このための装置をコア・キャッチャー（Core Catcher）あるいはPAFC（Post Accident Fuel Containment）と呼んでいる。

炉心キャビティ下床部にたまった溶融物は、燃料取替機構などの装置やコンクリートを溶かすであろう。それと同時に、溶融物表面から上方への熱放射がきわめて大きく、炉心キャビティ内の各部の温度を上昇させる。場合によっては融点にまで至らしめることがあり初期の段階から見出された。したがってコアキャッチャーは、溶融物を下床から冷却すると同時に、上部
への熱放射を遮蔽するものであることが要求される。そこで考えられた最もプリミティブな形のコアキャッチャーは、図25に示すような形のものであった。この方向の設計はその後改良され、図26のような形が提唱されている。ここでは1は冷却された底板、2は重力冷却コイルで、いずれも水で冷される。しかし、この型式ではPCRVに多数の冷却管が通ることや、溶融物が期待されたとおりに底板に流れ込むかどうかという点に問題がある。

そこで第三の物質を積極的に介在させる方法も平行して検討されている。一つの方法は、融点も沸点も比較的低いZnCl₂のような物質を使うことである。ZnCl₂は溶ける際に分解熱をうぶう、溶れた後は溶融燃料や溶融ステンレスよりも上に浮いて気化熱をうぶう。これによって溶融物の上面温度を約730℃まで下げることができる。気化したZnCl₂は炉心上部の冷たい部分で固化し再び下方へ落下すると考えられるから、一種のヒートパイプのような効果も期待できる。しかしながら、このようなZnCl₂の循環がうまくいかどうかには疑問の余地がある。

他の方法は、炉心キャビティ下部に2cm厚程度の鉛をひきることが考えられる。この目的は、溶融UO₂を溶融鉛の中で分散させ、発熱密度を減少させることにある。その結果、コンクリートのライナー下部の冷却からの熱流束が軽減される。しかしこの際、溶融ステンレスは鉛の上に浮くが、この中に金属叢核の核分裂生成物が含まれるので、かなりの熱放射が生ずるものと思われる。

そこで最近、UO₂を溶かしかつステンレスを下へ流れる物質としてBorax (Na₂B₄O₇)が有望と考えられている。Boraxはガラス工業の分野ではよく知られた物質で、その融点は741℃、沸点は1575℃でいずれも適当な値を持っている。また1100-1400℃でUO₂を溶かすことが実験的に確かめられた。図27は、Boraxを用いたコア・キャッチャーの概念図である。Boraxは30cm角のステンレス製の箱に入れられて下部に積まれており、Boraxとコンクリート・ライナーの間にはグラファイトが盛られた。1000MWe級の原発の場合、最下段のBoraxまで溶融するに要する時間は約10時間と見積られている。

これらはPCRVの内部にコア・キャッチャーを設置するもので、いわば内部コア・キャッチャーと分類されるべきものであるが、これ以外にPCRVの外周から冷却する方法も検討されている。これは最近、コンクリートと溶融UO₂の反応が比較的おそい(30cm/h)ことがわかったこと、および、溶融UO₂がコンクリート中を下方へ下方へと抜け落ちるのでなく分散しながら広がると考えられましたことによる。そこでPCRVの下部を外部から冷却することによっても、溶融UO₂をコンクリート内で固化させる可能性があり、現在検討されている。しかしこの場合にも、炉内上方への熱放射や、燃料交換用の貫通部に対しては内部での何からの対策が必要である。

以上見てきたように、コア・キャッチャーはまだその概念さえも固まっておらず、いくつかの設計にも実証を欠く点が多い。今後、実験的研究の期待される分野である。

5.6 確率論的安全性評価

軽水炉に対して行なわれたと同様の確率論的安全性評価が、300MWe原発型炉に対しても行
なわれた。それによれば、炉心の破損に至る事故過程の相対的な寄与は表12のようにまとめられる。

表12 炉心の破損の確率に対する各種事故過程の相対的寄与

<table>
<thead>
<tr>
<th>事故の分類</th>
<th>事故の種類</th>
<th>主な発生原因</th>
<th>炉心破損確率に対する寄与</th>
</tr>
</thead>
<tbody>
<tr>
<td>流量喪失</td>
<td>燃焼熱除去(※)</td>
<td>主電力喪失</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>炉停止時熱除去(※)</td>
<td>偽トリップ</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>原子炉トリップ</td>
<td>フィード水停止</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>減圧</td>
<td>PCRVのゆるやかな漏洩</td>
<td>0.01</td>
</tr>
<tr>
<td>反応度事故</td>
<td>原子炉トリップ</td>
<td>不注意な制御棒引抜</td>
<td>0.01</td>
</tr>
<tr>
<td>構造破壊</td>
<td>主要構造破壊</td>
<td>大地震</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(※) 炉停止後30分以後の冷却系事故
(※※) 以内

以下のような主要な結論が得られた。
1. 炉心破壊をもたらす可能性の高い事故経過は、炉心冷却水流量の低下とそれに続く残熱除去系の停止である。
2. 電力系の事故が上記1をひき起す原因として最も確率が高い。
3. 蒸気発生器の熱容量を利用する炉停止直後の熱除去方式はきわめて信頼性が高く、この事故による炉心破壊の割合は全体の10％以下である。
4. PCRVの漏洩による減圧事故の確率はきわめて小さく、これによる炉心破壊は全体の0.01％である。
5. 反応度印加の際の原子炉トリップの失敗の可能性も低い（〜1％）。
6. 以上の各種の要因を考慮した炉心破壊事故の全発生確率は10^{-9}/年である。

ここで得られた炉心破壊確率10^{-9}/年は、軽水炉についての値6×10^{-9}/年より良い値である。もっともこの1と6という値を比較してGCFRが軽水炉よりも安全であるという議論をする程の精度はないが、少なくとも軽水炉と同じ安全性を有すると結論することはできる。
6. 開 発・試 験

GCFRについては、設計研究が行なわれてきたみならず、多くの開発や試験が実際に行なわれて来た。そのうちのいくつかはすでに紹介したが、本章ではとくに300 MWe 原型炉関係の開発・試験について述べることとする。

(1) 燃料の高湿照射

GCFR用燃料被覆材の設計温度はLMPBR用のもと同程度（700℃）であるが、さらに高湿までの照射試験を行うことが必要と考えられ、EBR-II による高速中性子の照射試験が行なわれ、現在も続行中である。1976年2月に終了したF-1シリーズでは9本の燃料棒がNa中で照射され、最高121 MWD/kgに達した。温度は570～760℃で、いずれの照射結果も良好であった。現在、F-3 シリーズの照射が粗面燃料棒を用いて進行中である。

(2) ベント型燃料の照射試験

核分裂生成ガスのベントシスメは、GCFR燃料の特徴である。そこでこれについては十分な実証試験を行う必要があると考えられている。すでにORNLではGB-9と呼ばれるベント型燃料のカプセル照射を終了した。燃料線は55 MWD/kgで、良好な結果を得た。現在GB-10の照射が行なわれている。

さらに大規模なベントループのベント燃料の照射試験が、ユーリッヒ、KWU、GA の協力のもとに、ベルギーのMo1 のBR-2 を用いて行なわれる。試験体は図28に示すような212本ベントループで、実際と同じ粗面加工が施されている。冷却材もHeで、圧力は8.5 MPaとやや低い（実際には9～12 MPa）が、その他の蓄出力や被覆温度などの条件は実際の設計条件に等しい。

この照射実験の主目的は、(1) ベントシスメの実証、(2) 燃料線の高湿He中での照射、(3) 粗面の特性の炉内試験、の三点である。照射は三つの段階に分けられる。HELM-1ではUO2を含まないタミの試験体が用いられ、HELM-2ではUO2燃料、HELM-3ではUO2/PuO2混合燃料が照射される。照射開始はやや遅れているが、1977年初めに予定されている。最終的な結果が得られるのは1978～1979年になると思われる。

BR-2による照射実験に先立って、電気加熱による炉外の模擬実験がカールスルーエで行なわれた。試験体は照射用と同じ12本ベントループで、試作試験を兼ねてKWUから提供された。図29はその実験結果とSAGAPOと呼ばれるコードでの解析結果の比較である。図中実験に凹みが見られるのはスパーサ・グリッドの影響である。SAGAPOは、スパーサーの効果や、粗面の特性などを良く再現している。

(3) 燃料バンドルの熟・流力試験

粗面燃料の伝熱および流体力学的実験がカールスルーエおよびスイスEBRで大規模に行な
われたことはすでに述べた。現在 E I R では GA 社との協力のもとに、3 0 0 MWe 原型炉用燃料の 3 7 本ペンチルドが Agath e Hex と呼ばれるループでテストされている。プランケット燃料の試験はカリフornsia 大学サンタバーバラで行なわれている。これは水による実験で、摩損および局所熱伝達率が測定された。さらに大規模な炉外実験が、GA と ORNL の協力で計画されている。これは ORNL に 1 0 MPa（100 気圧）の He ループを建設し、9 1 本ペンチルドまでのテストを行なおうとするものである。8 個の燃料要素、3 個の制御棒要素、2 個のプランケット要素の試験が計画されている。

(4) 炉物理および遮蔽実験

GCFR モックアップ炉心の炉物理実験は、ANL の臨界実験装置 ZPR－9 を用いて大規模に行なわれて来た。その詳細は文献 4 に述べられている。また炉心内の中性子ストリーミングに関する実験も ORNL で行なわれた。

(5) 燃料要素関係の試作開始

GCFR 燃料要素について、KWU と GA の協力のもとに統一した設計がまとめられたことはすでに述べたとおりである。この設計に基づいて、KWU を中心に各部の試作が行われた。粗面加工については、すでに述べたように、スイス E I R および独 KWU で各種のテストが行なわれた。

炉心設計上重要なのは、燃料要素とグリッドプレートの間のシールである。この部分には差圧 2.5 bar が生じるが、漏水損失は全流量の 1 ％以下におさえねばならない。ビストンリング型とコニカルシール型の二つの試作を行なった結果、いずれも所期の結果を得、1 5 0 0 時間の耐久試験結果も良好であった。

ベントシステムの燃料要素とグリッドプレートの接続部も重要である。これも 3 0 0 － 4 0 0 ℃で 1 5 0 0 時間の試験に成功した。これ以外にもグリッドスペーサーの電気放電加工による試作や、炉心部の 1 / 15 模型による振動試験が行なわれた。

これらの成果は、BR 2 における照射燃料の製作に反映された。また現在は 2 6 5 本のフルスケール燃料要素の製作が進行中である。

(6) ヘリウム循環機

主 He 循環機関係で開発試験の予定されているものは、ペアリングおよび軸シール、入口および出口部ノズル、主隔絶弁、および本体の総合試験である。主隔絶弁は非常に高い信頼性を持って開閉することが要求されるので、フルスケール・モデルによって、その作動、潤滑などの試験を行う。

また実機の循環機の総合試験を行うために、図 3 0 のような試験装置を製作することが検討されている。これは図に見るような圧力容器中に循環機を取り、全出力で回転させようとす るもので、圧力容器内には放熱のための熱交換器も設けられる。また蒸気を供給するための大規模な装置も必要である。本装置を用いて、一基目の主循環機については 5 0 0 時間、二基、

-27-
三基日については200時間の特性試験が計画されている。

(7) 蒸気発生器

GCFR用蒸気発生器では、すでに述べたように、炉停止後の熱除去を行うために低流量での沸騰安定性が重要である。この点の試験が、実機と同じ長さを持つ8本の平行蒸発管で行われる予定である。蒸発管は、実際に加圧Heによって加熱される。この他、Heの流量分布試験、蒸発管の振動試験などが計画されている。

(8) PCRV

PCRVに関連の試験項目は、14分の1あるいはそれ以上のモデルによる過加圧試験、15分の1モデルによる各部シールの試験、減圧事故時の放出He流量を抑えるための流量抑止機構（Flow restrictor）の試験、熱遮蔽試験などである。このうち、15分の1モデルによる蒸気発生器プラグの製作はすでに開始されている。

以上の他、遮蔽、燃料採取、制御棒などの分野で開発試験が計画されている。
7. あ と が き

以上本報では、GCFR の開発の歴史、およびその熱・流体工学上の要因を述べた。要約すれば、HTGRからのHe技術とLMFBRからの燃料技術を受継いだ原子炉がGCFRである。GCFRに特徴的な設計は、熱伝達を向上させるための組面燃料と、核分裂生成ガスのベントシス템である。冷却材のHeは化学的に安定で相変化をしないという安全性上大きな利点を持つが、他方系を高圧にするため減圧事故の可能性がある。GCFRの開発における三つの主観点は、組面燃料の熱・流体特性の把握、核分裂生成ガスのベントシステムの確立、および減圧事故の解析とその対策の確立である。

ランド・コーポレーション（RAND）は、米国の電力研究所（EPRI）の委託を受けてGCFRの熱・流体設計のレビューを行なった。その報告書は次のような結論を出している。「GCFRは熱・流体力学的に見て実現可能であり、現在の設計思想が健全なものである点に疑いはない。しかしながら、今なお技術的には不確かな分野が残されている。それは仮想事故の解析であって、今後この分野の研究開発を進めることが、最終設計を確立するために必要であろう。」

本報の結論もこれと全く同様である。

現在世界中では、2種類の軽水炉、CANDU型重水炉、AGR、HTGRなどのガス炉など多くの種類の熱中性子炉が平行に稼動している。このような現状を考えるとき、高速炉の分野でののみはただ一種類の炉型のみが開発されるべき必要性はないように思われる。現在世界中で少なくとも6ヶ国がLMFBRの実験炉ないし原型炉を建設しようとしている。しかもそれが各国とも大きな負担となっていることは事実である。そこで、問題のGCFR原型炉が建設されるべき必要はなく、また可能性もない。その意味で、GCFRの開発においては国際協力が不可欠である。現在、米国GA社と西独KWU社の連携を推し、それに各国の研究機関が参加する形の国際協力網がはりめぐられ、実際、十分によく機能している。現在のところ、どの国も一国でGCFRを開発しようと考えていないため、遅れて参加する国々に対しても未だ門戸が開かれているといえる。

最後に、カルスルーフェのGCFR開発の指導者でありかつヨーロッパ原子力界の指導者でもあるWirtz教授の言葉を引用して結びにかえる。

「現在世界で少なくとも5か国から6国がLMFBRを建設しようとしている現状を考えると、遅れて参加したが同等な可能性をもつ競争者に対し、ある程度の予算をさくことが不可能とは思えない。それによって、両方のシステムの経済性や安全性についての確実な情報を得ることができる。それが原子力界の責任、すなわち安全でかつ経済的なFBRの開発という目的にかなうことになるであろう。これは、二つのシステムを共に開発し、両者が競合し、利用者が自分に適した炉型を選択できるようになるなんてはじめて達成できるのである。」
(9) 望月, 他, "Heガス冷却増殖炉の解析", FAPIG, 62 (1971) p.70.

(21) M. Dalle Donne, 私信.

① Reactor core and blanket ② Steam generator unit ③ Circulator unit ④ Emergency cooling loop ⑤ Refuelling pantograph ⑥ Lower cavity ⑦ Helium and fission gas treatment plant ⑧ Shielding
図2 ギ・キ・クウの設計による1000MWe実用炉

- 33 -
図3 ガス冷却型300MWe原子炉
図4 GA社300MWe原発炉の完成予想図

図5 GA社原発炉の炉心
図7 300MW原型炉の燃料要素
図10 300MWe原型炉のヘリウム循環機
図11 主蒸気発生器のプロシード

図12 GCFR燃料用粗面要素の一例
図13 各種の粗面プロフィルにおけるスタントン数や摩擦係数（平滑面の値に対する比）
図14 流れ方向の炉内温度分布（300MW）
原型炉、最高燃料温度チャンネル

図15 燃料断面内半径方向温度分布
（300MW原型炉、燃料温度最高部）
図16 300MWe原型炉のプラントサイクル

図17 補助冷却系のフローシート（300MWe原型炉）
図18 300MWe原型炉の運転モード
（上段：出力運転、中段：炉停止直後
下段：長期停止）
図19 減圧速度（時定数）と被覆材
温度の関係（1000MWe商用炉）

図20 減圧事故時の被覆材温度変化
（1000MWe商用炉）

図21 減圧事故時の被覆温度，炉内圧力，循環機スピードの変化
（1000MWe商用炉）

図22 減圧事故時の健全な冷却系統数
と被覆材最高温度の関係
（1000MWe商用炉）
1. höchste Hüllrohrtemperatur
die Balken zeigen die Erhöhung
durch hot-spot
2. Heliumdurchsatz

図2.3 主循環機停止時の被覆材料温度とHe流量の変化
MELTING OF:
FIRST CLADDING
LAST CLADDING
FIRST TIE ROD NODE
LAST TIE ROD NODE
FIRST DUCT NODE
LAST DUCT NODE
FIRST FUEL

TIME SINCE LOF (SECONDS)

(a) 燃料要素内各部の溶融の時間経過

(b) 支持棒溶融時の燃料要素内温度分布

図24 燃料要素の溶融

-47-
図25 コアキャッチャーの概念

図26 最近のコアキャッチャーの設計例
(a)立断面図，(b)上方から見た平面図
図27 溶融物質としてBoraxを用いたコア・キャッチャー

Dimensions in Centimeters
図28 BR2照射用ペント燃料試験体

図29 BR2照射燃料の炉外試験
（実線はSAGAPOによる解析値）
図30 ヘリウム循環機試験装置