DH-10 号試験掘削ならびに調査研究結果 速報

2000年 5月

核燃料サイクル開発機構
東濃地科学センター
本資料の全部または一部を複写、複製、転載する場合は、下記にお問い合わせ下さい。
〒319-1194 茨城県那珂郡東海村松森 4 番地 49
核燃料サイクル開発機構
技術展開部 技術協力課

Inquires about copyright and reproduction should be addressed to:
Technical Cooperation Section,
Technology Management Division,
4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194,
Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute)
2000
目次

1. はじめに .. 1
2. 地質概要 .. 1
3. 試験掘削および調査研究の実績 .. 4
 3.1 期間 .. 4
 3.2 試験掘削の実績 .. 4
 3.2.1 水井戸 .. 4
 3.2.2 DH-10号孔 .. 5
 3.3 調査研究実績（DH-10号孔） .. 7
 3.3.1 地質調査 ... 7
 3.3.2 物理検層 ... 7
 3.3.3 ポアホールテレビ計測 .. 8
 3.3.4 水理試験 .. 8
 3.3.5 採水試験 .. 8
4. 調査研究結果 ... 9
 4.1 水井戸 .. 9
 4.2 DH-10号孔 ... 10
 4.2.1 地質調査結果 ... 10
 4.2.2 検層結果 ... 12
 4.2.3 ポアホールテレビ計測結果 20
 4.2.4 水理試験結果 ... 22
 4.2.5 採水試験結果 ... 22
5. まとめ ... 23
1. はじめに

東濃地科学センターでは、地層処分研究開発の基盤研究である地層科学研究の一環として、広域地下水流動研究を平成4年度から実施している。広域地下水流動研究は、東濃鉱山を含む約10km×10kmの範囲（図1参照）を対象に、地下水準までの地下水の流れや水質などを明らかにするために必要な調査・解析技術を開発すること、その調査・解析結果の妥当性を評価するための技術を開発することを目的として研究を実施している。

この研究においては、地下深部の地質環境に関する情報を直接取得できる試験孔を用いた調査研究が非常に重要であり、地下深部の地質や地質構造に関する研究、地下水の流れに関する研究、地下水の水質に関する研究などが1本の試験孔を用いて多角的に実施されている。

本報告書は、広域地下水流動研究のための試験孔として10番目に掘削されたDH−10号孔で行われた試験掘削あるいは各種調査研究の結果の概要を速報として取りまとめたものである。DH−10号孔は瑞浪市大沼町内に掘削され、掘削深度約1012.3mである。位置については図1を参照されたい。

2. 地質概要

本地域の地質は、美濃帯に属する中・古生代の堆積岩類および白亜紀の花崗岩類・流紋岩類からなる基盤岩類、これらを不整合に覆う中新経～鮮新世の堆積岩類および第四紀の堆積物から構成されている。

基盤岩類（中・古生代の堆積岩類と白亜紀の花崗岩類・流紋岩類）および中新経（中新世に形成された地層）は主に丘陵を形成しており、これらの上位には、鮮新経（鮮新世に形成された地層）の額戸層群がほぼ水平に分布し、「土岐面」と呼ばれる丘陵頂面を成している。第四紀の地層は丘陵周辺の崖壁堆積物、河岸段丘堆積物および沖積層で構成されている。参考として図1に試験孔周辺の地質図を、表1に地質年代表を示す。
図1 研究対象領域および試験孔位置図
| 新生代 | 第四紀 | 完新世 | 0.01
| 更新世 | 1.7
| 鮮新世 | 5.1
| 第三紀 | 中新世 |
| 古第三紀 | 漸新世 | 24
| 始新世 | 38
| 晩新世 | 55
| 晩新世 | 65
| 中生代 | 白亜紀 | 後期 | 96
| | 前期 |
| | 143
| 侏羅紀 | 後期 | 162
| | 中期 |
| | 前期 | 177
| | 212
| 古生代 | 三疊紀 | 後期 | 234
| | 中期 |
| | 前期 | 243
| | 274
| | 289

（単位：百万年）
3. 試験掘削および調査研究の実績

3.1 期間
平成11年4月14日～平成12年1月25日

3.2 試験掘削の実績
3.2.1 水井戸
①掘削深度：101.0m
②掘削期間：平成11年4月16日～4月23日
③仕上がり仕様
孔径218mm；深度0～5.6m，
孔径190mm；深度5.6m～101.0m

-図-
3.2.2 DH-10号孔

①掘削深度 : 1012.3m
②掘削期間 : 平成11年5月7日～8月7日
③掘削および仕上げ仕様

掘削終了時

ケーシングパイプ
（孔径350.0mm）

ケーシングパイプ
（孔径267.4mm）

仮ケーシングパイプ
（孔径114.3mm）

地表
5.85m

121.1m

181.6m

HQ3-WL
（孔径98.4mm）

1012.30m
調査終了後

ケーシングパイプ
（孔径 350.0mm）

ケーシングパイプ
（孔径 267.4mm）

地表
5.85m

裸孔
（孔径 98.4mm）

121.1m
181.6 m

839.2m セメンティング

922.3m セメンティング

1012.30m
3.3 調査研究実績（DH-10号孔）

3.3.1 地質調査
　試験地点の地質・地質構造に関する情報を得るために、試験で得られた岩芯（コア）の観察を行った。観察の対象としたのは、深度5.85m〜1012.30mの区間にある。なお、深度 0〜5.85m 間は岩芯が得られていない。

3.3.2 物理検層
　試験孔周边岩盤の物理的性質を調べるために物理検層を実施した。調査項目と調査対象深度は以下に示す通りである。

①電気検層
　深度5.9m〜1012.3m
　試験孔周边岩盤の電気抵抗を調べるために実施した。

②密度検層
　深度5.9m〜1012.3m
　試験孔周边岩盤の密度を調べるために実施した。

③中性子・γ線検層
　深度5.9m〜1012.3m
　試験孔周边岩盤の空隙率を調べるために実施した。

④音波検層
　深度5.9m〜1012.3m
　試験孔周边岩盤の弾性波速度を調べるために実施した。

⑤温度検層
　深度0.0m〜1012.3m
　試験孔内の水の温度を調べるために実施した（水温を測ることで、湯水の有無等を調べることができる）。

⑥孔径検層
　深度5.9m〜1012.3m
　試験孔の孔径を調べるために実施した（孔径を測ることで、崩壊箇所を特定することができる）。

⑦孔曲がり検層
　深度5.9m〜1012.3m
　試験孔が地下深部でどちらの方向にどの程度に曲がっているのかを調べるために実施した。

⑧フローメータ検層
　深度5.9m〜1012.3m
　水を通す割れ目の位置とその割れ目がどの程度水を通すのかを調べるために実施した。
3.3.3 ポアホールテスト計測
試験孔壁の割れ目を観察するために実施した。観察対象深度は 5.9m～1012.3m である。

3.3.4 水理試験
試験孔周辺岩盤の水の通り易さを調べるために透水試験と揚水試験の 2 種類の試験を実施した。
①透水試験*1
1. 試験深度 46.50m～61.50m
2. 試験深度 257.22m～844.00m
②揚水試験*2
1. 試験深度 46.50m～121.50m
2. 試験深度 189.00m～249.00m
3. 試験深度 250.50m～310.50m
4. 試験深度 305.40m～380.40m
5. 試験深度 381.90m～441.90m
6. 試験深度 567.00m～660.00m
7. 試験深度 660.00m～839.00m
③孔内水位
掘削時の地下水位は、掘削深度121.50mまで深度約12m、掘削深度約279m以深では深度約60mを貫く安定した。このことから、深度約300m付近に不透水層が存在すると考えられる。また、掘削終了後の水位は深度約135mであった。

3.3.5 採水試験
地下水の水質を調べるために採水を行った。
1. 採水深度 333.5m～341.5m

透水試験*1：ある深度区間に圧力をかけ、その区間の透水量係数を測定する試験。
揚水試験*2：地下水を汲み上げて、岩盤の透水量係数を測定する試験。
4．調査研究結果

4．1 水井戸

①揚水量および水位

揚水試験の結果、限界揚水量は140 m³/分であることが明らかになった。
また、地下水の水位は深度9.0mであった。

②水質

水井戸から汲み上げられた地下水の化学分析結果を表2に示す。なお、表中には、水道法と温泉法に基づく各元素の基準値を併記する（分析対象とした元素のみ）。

表2 水質分析結果一覧

<table>
<thead>
<tr>
<th>測定項目</th>
<th>井戸水の分析値（平均）</th>
<th>水道法に基づく基準値*</th>
<th>温泉法に基づく基準値**</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.03</td>
<td>5.8〜8.6</td>
<td>--</td>
</tr>
<tr>
<td>ケイ素（全量）</td>
<td>13.42（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>鉄（全量）</td>
<td>0.06（mg/l）</td>
<td><0.3（mg/l）</td>
<td>--</td>
</tr>
<tr>
<td>マグネシウム</td>
<td>0.26（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>カルシウム</td>
<td>4.19（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ナトリウム</td>
<td>6.44（mg/l）</td>
<td><200（mg/l）</td>
<td>--</td>
</tr>
<tr>
<td>カリウム</td>
<td>0.72（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>フッ素</td>
<td>1.58（mg/l）</td>
<td><0.8（mg/l）</td>
<td>>2（mg/kg）</td>
</tr>
<tr>
<td>塩素</td>
<td>1.25（mg/l）</td>
<td><200（mg/l）</td>
<td>--</td>
</tr>
<tr>
<td>硝酸イオン</td>
<td><0.1（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>硫酸イオン</td>
<td>3.03（mg/l）</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>アルカリ度***</td>
<td>0.36（mg当量/l）</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

水道法に基づく基準値*：「水道法」第4条第1項第3・4号の水質基準による。
温泉法に基づく基準値**：「温泉法」第一号第二条別表より抜粋。
アルカリ度***：水に溶解しているアルカリ分を中和するために要する酸の量。
4.2 DH-10号孔

4.2.1 地質調査結果

図2に地質調査結果をまとめたものを示す。DH-10号孔は、孔口から孔底まで斑状・粗粒の黒雲母花崗岩で構成される（図3）。地表付近では風化によって砂状（真砂）を呈し、地下では小規模な貫入岩（ペグマタイト・アプライト脈）および粘土化を受けた箇所が数箇所で認められる。また、割れ目の発達部も数カ所で観察されるが、それらの角度は地表付近で概ね水平、孔底付近で垂直である。

<table>
<thead>
<tr>
<th>柱状図</th>
<th>割れ目</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>積層（m）</td>
<td>積層厚（本/m）</td>
<td>割れ目発達部</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>風化・変質を受けた箇所で割れ目が発達するもの</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>風化・変質受けた箇所で割れ目が発達するもの</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>900</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>一部で開口が認められる</td>
</tr>
</tbody>
</table>

図2 DH-10号孔地質柱状図
図3 DH-10号孔の代表的な黒雲母花崗岩（深度679.25～683.15m）
4. 2. 2 検層結果

① 電気検層

図4に電気検層結果を示す。

通常の花崗岩の電気比抵抗は数千Ωmあるいはそれ以上の非常に高い値を示すが、花崗岩中に割れ目が発達し、水を多く含む部分や花崗岩が変質して粘土化しているような部分の電気比抵抗値は小さくなる。

DH-10号孔においても、電気比抵抗が周囲に比べて小さくなっている部分が、何カ所か確認された。この電気検層結果および岩芯観察から、DH-10号孔の岩盤はA層～I層までの9層に区分された（図4参照）。これらのうち、岩芯で観察された割れ目の発達部は、概ねC, E, G, I層に対応する。
②密度検層

図5に密度検層の結果を示す。

密度検層の結果、DH-10号孔の岩石の密度は2.44～2.56 g/cm³（花崗岩の一般的な密度：約2.62 g/cm³）であることが分かった。一部の深度で密度が小さくなっているが、これらの深度は割れ目が多い部分に対応している。

図5 密度検層結果
③中性子・γ線検層

図6に中性子検層結果およびそれから求めた地層の空隙率の値を示す。

DH-10号孔における岩盤の空隙率は、3～17%を示す。空隙率の大きな部分は、割れ目頻度が大きくになっている部分（図2参照）とほぼ一致しており、割れ目が発達していることを示すと考えられる。

図6 中性子検層結果および地層の空隙率
図7にγ線検層結果を示す。

γ線検層の値は、本地域で一般的に観察される花崗岩の自然γ線値（約200～750API）とはほぼ同じ範囲であり、ウランなどの物質が濃縮する部分（鉱化帯：約8000API）は無いことが明らかになった。
音波検層

図8に音波検層結果を示す。

音波検層は岩盤中の音波の伝わる速度を測定するものである。通常、花崗岩中の音波速度は5km/秒程度の値を示すが、割れ目などが発達している部分ではそれよりも小さくなる。

音波速度が減少する部分（例えば、E層）は、電気検層で電気比抵抗値が小さい部分とほぼ対応している。ただし、最下層のI層については、電気比抵抗値の顕著な低下が見られないが、音波検層では著しく低下している。このことは、他の深度に比べ、I層の割れ目の性質が異なっていること（割れ目中の粘土鉱物の有無など）に起因すると考えられる。

図8 音波検層結果
⑤温度検層

図9に温度検層結果を示す。

地下水の水温は、深度とともに比較的緩やかに上昇し、孔底での水温は26.7℃であった。温度増加率は0.12℃/10mであり、全国的な平均地温勾配（0.2〜0.3℃/10m）よりも小さい値を示す。また、深度890m、990m付近では温度増加率に変曲点が認められ、これらの深度で水の出入口があるものと考えられる。なお、孔口から深度256.8mの地下水面までは、孔内の気温を示している。
6孔径検層

図10に孔径検層の結果を示す。

孔径検層の結果、DH-10号孔の孔径は、深度122m, 262m, 393m, 414mで拡大していることが分かった。これらの深度は割れ目の多い部分であり、他深度の岩盤に較べ脆弱な部分と考えられる。なお、深度120mから深度180m程度までの孔径拡大部は、拡孔によるものである。
⑦孔曲がり検層

本孔は、孔底付近（深度1010m）で孔口から北西方向（N66W）に5°30’傾斜している。

⑧フローメータ検層

コアの観察などで得られた割れ目や割れ目発達部の中で、実際に地下水が流れている箇所を抽出するため、フローメータ検層を行った。その結果、深度257m、350m、898m、982mで、孔内への地下水の出入りのあることが認められた。
4.2.3 ボアホールテレビ計測結果

図11にポアホールテレビ計測から明らかになったDH-10号孔の割れ目頻度と累積割れ目本数（孔底から地表方向に割れ目の本数を足し合わせていった）

図11 DH-10号孔の累積割れ目本数および累積開口幅の深度変化
合計本数および累積開口幅（孔底から地表方向に割れ目の幅を足し合わせていった合計開口幅）の深度変化図、図12にポアホールテレビ計測の一例を示す。

累積割れ目本数および累積開口幅の増加率変化から、DH-10号孔は区間①～⑤の8区間に分類される（図11参照）。これらの区間は、電気検層結果などから区分されたA層～I層と比較した場合、表4に示すような対応を示す。

| 表4 ポアホールテレビ計測および電気検層結果による区分一覧 |
|------------------|-------------------|
| ポアホールテレビ計測による区分 | 電気検層結果による区分 |
| 区間① | A層 |
| 区間② | B層+C層+D層 |
| 区間③ | E層 |
| 区間④ | F層 |
| 区間⑤ | G層 |
| 区間⑥⑦ | H層 |
| 区間⑧ | I層 |

なお、区間①（深度0～60m）、区間⑤（深度390～440m）、区間⑤（深度570～660m）では、他深度に比べ、割れ目の本数および開口幅の増加、電気比抵抗値の減少が認められる。岩芯観察では、これらの深度で風化および変質を受けた割れ目の発達が観察される。
4.2.4 水理試験結果

表5に、水理試験を行った区間および結果を示す。

<table>
<thead>
<tr>
<th>試験方法</th>
<th>試験区間</th>
<th>区間長（m）</th>
<th>透水量係数*（m²/sec）</th>
</tr>
</thead>
<tbody>
<tr>
<td>透水試験</td>
<td>46.50m～61.50m</td>
<td>15.00</td>
<td>1.50×10⁻⁴</td>
</tr>
<tr>
<td>透水試験</td>
<td>257.22m～844.00m</td>
<td>586.78</td>
<td>2.30×10⁻⁵</td>
</tr>
<tr>
<td>揚水試験</td>
<td>46.50m～121.50m</td>
<td>75.00</td>
<td>7.40×10⁻⁵</td>
</tr>
<tr>
<td>揚水試験</td>
<td>189.00m～249.00m</td>
<td>60.00</td>
<td>3.83×10⁻⁵</td>
</tr>
<tr>
<td>揚水試験</td>
<td>250.50m～310.50m</td>
<td>60.00</td>
<td>1.62×10⁻⁵</td>
</tr>
<tr>
<td>揚水試験</td>
<td>305.40m～380.40m</td>
<td>75.00</td>
<td>6.77×10⁻⁵</td>
</tr>
<tr>
<td>揚水試験</td>
<td>381.90m～441.90m</td>
<td>60.00</td>
<td>8.67×10⁻⁷</td>
</tr>
<tr>
<td>揚水試験</td>
<td>567.00m～660.00m</td>
<td>93.00</td>
<td>3.09×10⁻⁷</td>
</tr>
<tr>
<td>揚水試験</td>
<td>660.00m～839.00m</td>
<td>179.00</td>
<td>1.23×10⁻⁸</td>
</tr>
<tr>
<td>揚水試験</td>
<td>839.00m～900.00m</td>
<td>61.00</td>
<td>3.46×10⁻⁸</td>
</tr>
</tbody>
</table>

透水量係数*：地下水の通り易さの目安。なお、表中の透水量係数値は、簡易的な解析法によるものであり、現在詳細な解析を実施中である。

4.2.5 採水試験結果

採水試験の結果より、本孔深度333.4mの地下水は、アルカリ性（pH：8.46～8.87）を示し、低い酸化還元電位（-252～-270mV）を示す。なお、溶存成分は、現在分析中である。
5．まとめ

(1)地質に関する事項

・DH-10 号孔付近の岩盤は、斑状・粗粒の黑雲母花崗岩で構成され、割れ目の発達部が数カ所に存在する。
・電気検層結果および岩芯観察より、DH-10 号孔の花崗岩は 9 つに区分される。これら各区間に、割れ目の密度による区分に概ね対応する。
・密度検層の結果、DH-10 号孔の岩盤密度は、一般的な花崗岩の密度（約 2.62 g/cm³）よりも小さい 2.44～2.56 g/cm³である。
・DH-10 号孔の花崗岩は、3～17%の空隙率を示す。また、γ線検層の値は、本地域で一般的に観察される花崗岩の自然γ線値とほぼ同じ範囲であり、ウランなどの物質が浸透する部分は無いことが明らかになった。
・音波速度が減少する部分は、電気検層で電気比抵抗値が小さい部分とほぼ対応する。これらの部分は、割れ目の発達部に相当する。
・孔径検層の結果、孔径拡大部は割れ目の発達する部分に相当し、他深度の岩盤に比べ脆弱な部分と考えられる。
・電気検層、孔径検層および孔径検層の結果より、DH-10 号孔では深度約 90 ～260m、440～570m、660～890m に割れ目の少ない部分が存在すると考えられる。

(2)地下水に関する事項

・深度方向の温度勾配は、日本の一般的な地温勾配よりも小さく、地下に熱源がある可能性は低い。
・フローメータ検層の結果から、深度 257m、350m、898m、982m で、孔内への地下水の出入りのあることが推定される。
・DH-10 号孔周辺では、試験孔掘削中の地下水位の変化、水理試験の結果およびボアホールテレビ計測の結果などから、深度 300m 付近に水の通りにくい層が存在すると考えられる。水井戸を掘る場合には、この深度がボーリング停止の目安になると思われる。

23