固体廃棄物処理技術開発施設（LEDF）の合理化設計
— セル消火実証試験（Ⅱ） —
（技術報告書）

2002年11月

核燃料サイクル開発機構
大洗工学センター
本資料の全部または一部を複写・複製・転載する場合は、下記にお問い合わせください。
〒319-1184 茨城県那珂郡東海村村松4番地49
核燃料サイクル開発機構
技術展開部 技術協力課

Inquiries about copyright and reproduction should be addressed to:
Technical Cooperation Section,
Technology Management Division,
Japan Nuclear Cycle Development Institute
4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1184,
Japan

© 核燃料サイクル開発機構（Japan Nuclear Cycle Development Institute）
2002

©
固体廃棄物処理技術開発施設（LEDF）の合理化設計
- セル消火実証試験（Ⅱ）-
（技術報告書）

溝田 完治* 堂野前 宋* 松本 誠弘*** 菊地 豊*
加藤 徳義**** 宮崎 仁* 谷本 健一**

要旨

固体廃棄物処理技術開発施設（LEDF）のセル消火設備の気化器は、コストが高く施設の合理化設計の一環として削減する計画としている。気化器を削減した場合、液化炭酸ガスをセル内に直接放出することとなり、放出した液化炭酸ガスの急激な気化膨張によるセル内の圧力動及消火性能を把握する必要がある。そこで、火災実験室を用いて平成11年度にセル消火実証試験（Ⅰ）として、液化炭酸ガス放出時の火災実験室内の圧力挙動と可燃物燃焼時の消火性能を確認した。しかし、この試験は気密性のない火災実験室で実施したため、さらに実際のセルを想定した気密性の高い条件下での液化炭酸ガス放出時の圧力挙動を把握する必要がある。このため、大洗工学センター内の大型密封装置（SOLFAー2）を用いてセル消火実証試験（Ⅱ）を実施した。

得られた成果は、以下の通りである。
(1) 槽内の圧力挙動を把握するため、SOLFAー2の内部圧力は-50mmH2Oに設定し液化炭酸ガスを放出した。その結果、槽内压力は液化炭酸ガス放出直後に急激に下降し、その後徐々に上昇して数時間で急上昇する過程を経てだらかな下降するという傾向が見られた。
(2) 上記の短時間で急上昇する過程は、槽内に出した液化炭酸ガスの一部がドライアイスに変化して堆積したものが周囲の熱を奪い昇華して、再び気化することが主な要因と考えられる。
(3) 槽内最低平均温度は全域放出方式において約-48℃となり、局所放出方式では約-60℃となった。
(4) セル内圧力を負圧保持する条件として、液化炭酸ガス放出量を槽内空気の排気流量に対し約85%に設定することで、負圧を維持できることを見出した。
(5) 槽内圧力の急激な上昇を抑制するには、液化炭酸ガスをゆっくり放出することが効果的であることがわかった。

* 大洗工学センター 照射施設運転管理センター 環境保全課
** 大洗工学センター 管理部
*** 現 三井造船株式会社
**** 現 富士電機株式会社
The rationalization design of Large Equipment Dismantling Facility (LEDF) — Demonstration Test on Extinguishing of the cell (II) — (Technical Document)

Koji Takita* Yasushi Donomae* Yasuhiro Matsumoto*** Yutaka Kikuchi* Noriyoshi Katoh**** Hitoshi Miyazaki** Ken'ichi Tanimoto**

Abstract

The vaporizer in extinguishing of Large Equipment Dismantling Facility (LEDF) that cost is considering as a plan to cut down as part of a rationalization design highly. When the vaporizer is deleted, it becomes here where liquefied carbon dioxide is emitted in the direct cell, it is necessary to grasp the action and extinguishing performance of the pressure change in the cell by rapid vaporization test of the emitted liquefied carbon dioxide. So pressure action inside the fire laboratory in liquefied carbon dioxide release and a putting out the fire tests due to the combustion time of the combustible were enforced by using the general fire laboratory with Demonstration Test on Extinguishing of the cell (I) in the 11th year of Heisei. However, since these tests are affair laboratory without airtightness, it needs to grasp the pressure action at the time of liquefied carbon dioxide discharge under the airtight high conditions of having assumed the still more nearly actual cell. The cell (II) Demonstration Test on Extinguishing using the vessel of Sodium Leak Fire and Aerosol test rig (SOLFA-2) container inside of OEC was carried out.

The results were as follows.

(1) In order to grasp the pressure action of the vessel, the internal pressure of SOLFA-2 was set as $-50\text{mmH}_2\text{O}$, and emitted liquefied carbon dioxide. Consequently, the tendency for the pressure in the vessel to descend rapidly immediately after liquefied carbon dioxide discharge, and to descend gently-sloping through the process which goes up gradually after that and goes abruptly up for a short time was seen.

(2) The process which goes abruptly up in an above-mentioned short time is considered to be the factors with main what some liquefied carbon dioxide emitted in the vessel changed to dry ice, and was deposited taken and sublimating surrounding heat, and evaporating again.

(3) It sets to total flooding system and the average minimum temperature in the vessel becomes about -48°C, and at local applications system becomes about -60°C.

(4) It found out that negative pressure was maintainable by considering as the conditions which carry out negative pressure maintenance of the pressure in the vessel, and setting up the amount of liquefied carbon dioxide discharge to about 85% to the exhaust flux of the air in the vessel.

(5) In order to have controlled the rapid rise of the pressure in the vessel, it turns out that it is effective to emit liquefied carbon dioxide slowly.

* Waste Management Section, Irradiation Center, OEC, JNC
** Administration Division, OEC, JNC
*** Present Mitsui Engineering & Shipbuilding CO., LTD
**** Present Fuji Electric CO., LTD
<table>
<thead>
<tr>
<th>目次</th>
<th>頁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. はじめに</td>
<td>1</td>
</tr>
<tr>
<td>2. 試験方法</td>
<td>2</td>
</tr>
<tr>
<td>2.1 試験方法</td>
<td>2</td>
</tr>
<tr>
<td>2.2 試験条件</td>
<td>2</td>
</tr>
<tr>
<td>2.3 試験装置</td>
<td>3</td>
</tr>
<tr>
<td>2.4 測定項目及び計算項目</td>
<td>5</td>
</tr>
<tr>
<td>3. 試験結果</td>
<td>6</td>
</tr>
<tr>
<td>4. 考察</td>
<td>12</td>
</tr>
<tr>
<td>5. おわりに</td>
<td>15</td>
</tr>
<tr>
<td>6. 謝辞</td>
<td>16</td>
</tr>
<tr>
<td>7. 参考文献</td>
<td>17</td>
</tr>
<tr>
<td>表/図</td>
<td>内容</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>表 2.2</td>
<td>壓力挙動試験条件</td>
</tr>
<tr>
<td>表 3</td>
<td>試験結果のまとめ</td>
</tr>
<tr>
<td>図 2.1-1</td>
<td>試験装置図</td>
</tr>
<tr>
<td>図 2.1-2</td>
<td>槽内配置図</td>
</tr>
<tr>
<td>図 3-1</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-2</td>
<td>排気流量及び槽内圧力の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-3</td>
<td>槽内平均温度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-4</td>
<td>槽内温度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-5</td>
<td>槽内温度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-6</td>
<td>槽内温度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-7</td>
<td>槽内温度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-8</td>
<td>酸素濃度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-9</td>
<td>炭酸ガス濃度の経時変化（RUN-1試験）</td>
</tr>
<tr>
<td>図 3-10</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-11</td>
<td>排気流量及び槽内圧力の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-12</td>
<td>槽内平均温度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-13</td>
<td>槽内温度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-14</td>
<td>槽内温度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-15</td>
<td>槽内温度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-16</td>
<td>槽内温度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-17</td>
<td>酸素濃度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-18</td>
<td>炭酸ガス濃度の経時変化（RUN-2試験）</td>
</tr>
<tr>
<td>図 3-19</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-20</td>
<td>排気流量及び槽内圧力の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-21</td>
<td>槽内平均温度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-22</td>
<td>槽内温度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-23</td>
<td>槽内温度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-24</td>
<td>槽内温度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-25</td>
<td>槽内温度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-26</td>
<td>酸素濃度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-27</td>
<td>炭酸ガス濃度の経時変化（RUN-3試験）</td>
</tr>
<tr>
<td>図 3-28</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN-4試験）</td>
</tr>
<tr>
<td>図</td>
<td>内容</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3-29</td>
<td>排気流量及び槽内圧力の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-30</td>
<td>槽内平均温度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-31</td>
<td>槽内温度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-32</td>
<td>槽内温度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-33</td>
<td>槽内温度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-34</td>
<td>槽内温度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-35</td>
<td>酸素濃度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-36</td>
<td>水酸ガス濃度の経時変化（RUN−4 試験）</td>
</tr>
<tr>
<td>3-37</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-38</td>
<td>排気流量及び槽内圧力の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-39</td>
<td>槽内平均温度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-40</td>
<td>槽内温度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-41</td>
<td>槽内温度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-42</td>
<td>槽内温度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-43</td>
<td>槽内温度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-44</td>
<td>酸素濃度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-45</td>
<td>水酸ガス濃度の経時変化（RUN−5 試験）</td>
</tr>
<tr>
<td>3-46</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-47</td>
<td>排気流量及び槽内圧力の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-48</td>
<td>槽内平均温度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-49</td>
<td>槽内温度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-50</td>
<td>槽内温度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-51</td>
<td>槽内温度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-52</td>
<td>槽内温度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-53</td>
<td>酸素濃度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-54</td>
<td>水酸ガス濃度の経時変化（RUN−6 試験）</td>
</tr>
<tr>
<td>3-55</td>
<td>液化炭酸ガス重量及び分配内圧力の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-56</td>
<td>排気流量及び槽内圧力の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-57</td>
<td>槽内平均温度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-58</td>
<td>槽内温度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-59</td>
<td>槽内温度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-60</td>
<td>槽内温度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-61</td>
<td>槽内温度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-62</td>
<td>酸素濃度の経時変化（RUN−7 試験）</td>
</tr>
<tr>
<td>3-63</td>
<td>水酸ガス濃度の経時変化（RUN−7 試験）</td>
</tr>
</tbody>
</table>
図 3-64 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-8 試験） ・・・ 43
図 3-65 排気流量及び槽内圧力の経時変化（RUN-8 試験） ・・・・・・・・ 43
図 3-66 槽内平均温度の経時変化（RUN-8 試験） ・・・・・・・・・・・・ 43
図 3-67 槽内温度の経時変化（RUN-8 試験） 中心縦方向 ・・・・・・・・ 44
図 3-68 槽内温度の経時変化（RUN-8 試験） 0° 縦方向 ・・・・・・・・ 44
図 3-69 槽内温度の経時変化（RUN-8 試験） 90° 縦方向 ・・・・・・・・ 44
図 3-70 槽内温度の経時変化（RUN-8 試験） 270° 縦方向 ・・・・・・・・ 45
図 3-71 酸素濃度の経時変化（RUN-8 試験） ・・・・・・・・・・・・・・ 45
図 3-72 炭酸ガス濃度の経時変化（RUN-8 試験） ・・・・・・・・・・・・ 45
図 4-1 槽内圧力の経時変化 ・・・・・・・・・・・・・・・・・・・・・ 46
図 4-2 槽内圧力及び槽内平均温度の経時変化（一例） ・・・・・・・・ 46
図 4-3 槽内平均温度の経時変化 ・・・・・・・・・・・・・・・・・・・・・ 47
図 4-4 槽内圧力の経時変化 ・・・・・・・・・・・・・・・・・・・・・ 48
図 4-5 I 区間の槽内圧力と排気流量の関係 ・・・・・・・・・・・・ 48
図 4-6 II 区間の槽内圧力と排気流量の関係 ・・・・・・・・・・・・ 49
図 4-7 III 区間の槽内圧力と排気流量の関係 ・・・・・・・・・・・・ 49
図 4-8 排気流量と排気率の関係 ・・・・・・・・・・・・・・・・ 50
図 4-9 液化炭酸ガス放出速度及び槽内温度降下速度と

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　c-d 間の槽内圧力の関係 ・・・・・・・・・・・・ 50
写真 2.3-1 主な装置の外観 ・・・・・・・・・・・・・・・・・・・・ 51
写真 2.3-2 SOLFA-2 槽内部 ・・・・・・・・・・・・・・・・・・・・ 52
付録-1 試験条件における噴射ノズルの選定について ・・・・・・・・ 53
付録-2 噴射ノズル外形図 ・・・・・・・・・・・・・・・・・・・・ 54
付録-3 液化炭酸ガスボンベの本数の算出 ・・・・・・・・・・・・ 55
1. はじめに

固体廃棄物処理技術開発施設（LEDP）の合理化の一環として、セル消火設備の気化器を削減する検討を行っている。気化器は、火災時に消火剤（以下「液化炭酸ガス」という。）を気化させ、放出量を安定させることによりセル内圧力を制御するために設置されている。しかし、気化器は設置コストが高く建設費への影響が大きいため、平成10年度合理化検討設計（I）では合理化の対象となった。

気化器を削減した場合、液化炭酸ガスをそのままセル内に放出させることになるため、その消火性能と液化炭酸ガスがセル内で急激に気化した場合のセル内圧力挙動を把握する必要性から、平成11年度にそれらのデータの取得を目的としてセル消火実験試験（I）を実施した。

セル消火実証試験（I）では、セルの管理圧力である−50mmH₂O程度に保った火災実験室内で可燃物を燃焼させた状態で液化炭酸ガスを直接室内に放出し、その時の室内圧力挙動、温度変化及び液化炭酸ガスの消火性能を確認した。その結果、液化炭酸ガスの放出により瞬時に室内が正圧に至るような圧力挙動はなく、平均的に−20mmH₂O程度を維持した状態となった。

しかし、セル消火実証試験（I）では気密性のない火災実験室で実施したが、実際のセルは気密構造でありセル消火実証試験（I）の結果がそのまま適用できないと考えられるため、実際のセル環境を模擬した状況での試験が必要である。さらに、セル消火設備のうち液化炭酸ガスをセル内に直接放出する方式は、原子力施設では事例がないためセル消火設備の設計条件としてガス放出量、圧力挙動等のデータの取得が必要である。

そこで、本試験では大洗工学センター内の大規模ナトリウム浸漬・火災装置（SAPFIRE）施設の大型実験装置（SOLFA−2）を用いて、セルの気密性を模擬した槽内に液化炭酸ガスを直接放出し、槽内空気の排気流量、噴射ノズルの噴口面積、液化炭酸ガスボンベの周囲温度をパラメータとした試験を実施し、槽内の圧力挙動を調べた。また、槽内の炭酸ガス濃度変化、温度変化も合わせて測定しその挙動を明らかにした。
2. 試験方法

2.1 試験方法

本試験では、図2.1-1、図2.1-2に示す直径3.6m高さ10m縦長の槽内に噴射ノズルを縦方向に設置し、液化炭酸ガス放出時の槽内温度(\(T\))、酸素濃度(\(O_2\))、槽内圧力(\(dP\))、液化炭酸ガス供給配管内圧(\(P\))及び槽内空気の排気流量(\(F\))（以下「排気流量」という）を測定した。噴射ノズルは、液化炭酸ガスを槽内へ均等に放出するケース（以下「全域放出方式」という）として縦方向に3箇所設置し、局部的に放出するケース（以下「局所放出方式」という）では下方に1箇所設置した。液化炭酸ガスの放出量は、主に液化炭酸ガスポンベ周囲の気温に依存することが考えられる。すなわち、夏場の高温期は液化炭酸ガスポンベの内圧が増加し放出量の変化が大きくなることが考えられ、一方、冬場の寒冷期は液化炭酸ガスポンベの内圧に変化がないため放出量の変化は小さいと考えられる。これを模擬するため、液化炭酸ガスポンベ供給装置の周囲を囲いヒータにより加温した。なお、本試験は冬場に实施したため、冬場の温度設定は成り行きとし（約10℃）、夏場の模擬として30℃～35℃程度に加温した。

試験手順は、各試験条件により液化炭酸ガスポンベの周囲温度を設定し測定器を起動させた。次に排風機を起動させ、槽内圧力が-50mmH₂Oに設定出来るように槽内空気の排気流量を液化炭酸ガス放出量より少し多めに調整した。その後、槽内圧力が-50mmH₂O付近に達し安定した時点で給気ダンパの遮断と同時に液化炭酸ガスを放出した。

なお、SOLFA-2試験装置の排風機の最大能力は70㎥/min、槽内空気の最大排気流量は35㎥/minである。

2.2 試験条件

試験条件を表2.2に示す。本試験は、セル消火実証試験（I）で使用した噴射ノズルをもとに以下の項目について条件を設定し、液化炭酸ガスの放出時圧力挙動を調べた。

① 液化炭酸ガスを全域放出方式と局所放出方式で放出した場合
② ①で使用したノズル噴射面積が2倍の噴射ノズルで放出した場合
③ ①の条件で液化炭酸ガスポンベ周囲温度を変更した場合

上記の条件から、本試験に使用する必要な噴射ノズルを選定し槽内の排気流量を設定するため、あらかじめ液化炭酸ガス計画放出量を算出した。算出には液化炭酸ガスの放出量と槽内空気の排気流量が同じものと仮定した。なお、試験条件の噴射ノズルの選定は付録1に示す。
2.3 試験装置

装置の外観及び構内部を写真2.3－1～2に示す。試験装置は、大規模ナトリウム漏洩・火災装置(SAPFIRE)施設の大型密封試験装置(SOLFA－2)を用いて、試験に必要な液化炭酸ガスの供給設備・測定器類を設置した。

(1) 大型密封試験装置 (SOLFA－2)

<table>
<thead>
<tr>
<th>材 質</th>
<th>SUS304</th>
</tr>
</thead>
<tbody>
<tr>
<td>寸 法</td>
<td>内径 約φ3,600mm×高さ 約10,000mm</td>
</tr>
<tr>
<td>内 容 積</td>
<td>約100m³</td>
</tr>
</tbody>
</table>

(2) 大型排煙処理装置 (排気プロア)

<table>
<thead>
<tr>
<th>メ ー カ</th>
<th>北陸ファン工業株式会社</th>
</tr>
</thead>
<tbody>
<tr>
<td>型 式</td>
<td>HTB－5</td>
</tr>
<tr>
<td>仕 様</td>
<td>風量 70m³/min (4,200m³/h) 電動機 37kW</td>
</tr>
</tbody>
</table>

(3) 液化炭酸ガス供給装置

①液化炭酸ガスポンベ供給装置

<table>
<thead>
<tr>
<th>メ ー カ</th>
<th>日立酸素株式会社</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕 様</td>
<td>材質 SS400 ポンベ接続可能数 11本</td>
</tr>
<tr>
<td>安全弁設定圧力</td>
<td>14.2MPa (142kgf/cm²)</td>
</tr>
<tr>
<td>(認定番号 MAB－159－N－1)</td>
<td></td>
</tr>
</tbody>
</table>

②液化炭酸ガス放出配管

<table>
<thead>
<tr>
<th>材 質</th>
<th>SUS304TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>寸 法</td>
<td>1/2B Sch80</td>
</tr>
</tbody>
</table>

③噴射ノズル

噴射ノズルの外形及び寸法は付録－2に示す。

<table>
<thead>
<tr>
<th>噴射ノズル型式</th>
<th>TF8FC</th>
<th>TF12FC</th>
<th>TF14FC</th>
<th>TF20FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ノズル嘴口面積 (mm²)</td>
<td>7.07</td>
<td>15.9</td>
<td>22.1</td>
<td>44.2</td>
</tr>
</tbody>
</table>

認定型式番号 ： DN－013 号
材 質 ： C3604BD

④液化炭酸ガスポンベ (サイフォン管付)

<table>
<thead>
<tr>
<th>容 量</th>
<th>46.7ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>液化炭酸ガス充填量</td>
<td>31.1kg／本</td>
</tr>
<tr>
<td>本 数</td>
<td>11本</td>
</tr>
</tbody>
</table>

なお、本試験に必要な液化炭酸ガスポンベの本数の選定方法は、付録－3に示す。
⑤加温ハウス

材 質 : 耐炎繊維（バイロメックス）
寸 法 : 約 2,850mmL×2,120mmW×2,000mmH
仕 様 : ホットドライア 電熱容量 6kW 最大風量 3.7m³/min

(4) 計測機器

① デジタル台秤

メ ー カ : 株式会社エーアンドデイ
機 種 : FW-150KAI
仕 様 : 最大秤量 150kg 最小表示 20g

計量皿寸法 390mm×530mm

②酸素濃度測定器

メ ー カ : 塩場製作所
型 式 : MPA-510
仕 様 : 測定方式 磁気圧力式酸素計
測定範囲 0〜100vol% 再現性 ±0.5F.S%
試料流量 約 500ℓ/min 出力信号 0〜1V

③サンプリングユニット

メ ー カ : 塩場製作所
型 式 : ES-510
仕 様 : サンプリング方式 5℃ドライサンプリング
試料採取量 約 3ℓ/min〜4ℓ/min
試料吐出量 約 500ml/min

④圧力計

メ ー カ : 株式会社バアルコム
型 式 : 圧力センサー VBSIM20
デジタルパネルメータ VM-2VA-A7-4
仕 様 : 定格圧力 20MPa (200kgf/cm²)
定格出力 4MPa〜20MPa (40kgf/cm²〜200kgf/cm²)

⑤微差圧計

メ ー カ : 岡野製作所
型 式 : DP100A
仕 様 : 測定範囲 0〜100mmH₂O 出力機能 0〜1V
精度 正圧側±0.2%F.S. 負圧側±0.5% F.S.
2.4 測定項目及び計算項目

a. 測定項目（測定は、一定時間ごとに計測する）

①液化炭酸ガスボンベ減少量：ボンベ1本当たりの重量

本試験では、液化炭酸ガス供給装置に液化炭酸ガスボンベを11本並列に設置して、液化炭酸ガス供給配管を介し噴射ノズルから槽内に出したため、同時に出本分の液化炭酸ガスボンベ重量の測定はできない。各ボンベは、ほぼ同一の圧力で充てんされていて、各ボンベからは均一に液化炭酸ガスが放出されるものと仮定し、1本のボンベの重量変化量を測定してそれを11本分に換算し放出した液化炭酸ガス量とした。

②液化炭酸ガス供給配管内圧力：1箇所

圧力計は、液化炭酸ガス供給装置の配管に設置し、液化炭酸ガス放出時の配管内圧力変化を観察した。

③槽内圧力：1箇所

槽内圧力は、液化炭酸ガス放出時の影響を受けにくい槽内上部に設置し槽内の圧力変化を観察した。

④排気流量：1箇所

排気流量は、槽内出口の排気ダクトに設置し液化炭酸ガス放出時の流量変化を観察した。

⑤槽内温度：36箇所

槽内温度は、槽内の中心、0°、90°、270°の縦方向に940mm間隔で設置し、液化炭酸ガス放出時の槽内の温度分布を観察した。

⑥酸素濃度：3箇所

酸素濃度は、槽内の0°の縦方向に1936mm間隔で設置し液化炭酸ガス放出時の酸素濃度変化を観察した。

b. 計算項目

槽内の炭酸ガス濃度は、NFPA（米国防火協会）(1)規格により、以下の式を用いて換算した。

\[
\text{炭酸ガス濃度 (vol %)} = \left(\frac{21 - O_2}{21} \right) \times 100
\]

\[
O_2: \text{酸素濃度 (vol %)}
\]
3. 試験結果

今回実施した各試験結果を表3に示し、以下に示す各試験の挙動傾向について述べる。

(1) RUN-1 試験

図3-1に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から410秒まで0.6kg/sの放出速度で低下し、配管内圧力は0.25MPa/minの降下率で低下した。

図3-2に排気流量及び槽内圧力の変動を示す。排気流量は、液化炭酸ガスの放出直後で初期排気流量が12.5m³/minから8.7m³/minに低下したのち、次第に上昇し始め12.5m³/minに安定し、液化炭酸ガスの放出がほぼ終了した点（図3-1で重量曲線がだらかになるポイント）以降に一時的に13.8m³/minに上昇し、以後低下した。

図3-3に槽内の平均温度変化を示す。このグラフは、槽内円周方向に4箇所・縦方向に9箇所計36点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に下降し410秒で-40℃まで低下した。

図3-4から図3-7では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。槽内の各測定位置における温度変化は、同様な傾向を示し違いは見られなかった。

図3-8、図3-9に槽内の酸素、炭酸ガス濃度の経時変化を示す。酸素濃度は、時間が経過するに従い410秒付近で5vol%に減少し、700秒で4vol%となった。また、炭酸ガス濃度は800秒で86vol%となった。

(2) RUN-2 試験

図3-10に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から400秒まで0.6kg/sの放出速度で低下し、配管内圧力は0.25MPa/minの降下率で低下した。

図3-11に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後に見られるマイナス変動と400秒から一時的に見られるプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。排気流量は、液化炭酸ガス放出直後で初期排気流量が20.5m³/minから11.9m³/minに低下して次第に上昇し始め15m³/minに安定し、液化炭酸ガスの放出がほぼ終了した点以降に一時的に18.8m³/minに上昇し、以後低下した。

図3-12に槽内の平均温度変化を示す。このグラフは、槽内円周方向に4箇所・縦方向に9箇所計36点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に低下し400秒で-34℃まで低下した。
図3－13から図3－16では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。液化炭酸ガスは、槽内下部の1箇所で放出したため槽内下部の温度が極めて低くなった。ところが、槽内の上部温度は下部温度が最低温度に到達するまでは一定温度を保ち、下部温度が上昇する時点で急激に低下する傾向が見られた。
図3－13の槽内中心縦方向、図3－14の噴射ノズル後方に設置した槽内0°縦方向及び図3－16の槽内270°縦方向の温度変化は、同様な傾向を示している。図3－15の槽内90°縦方向の温度変化は、400秒時にRUN－2のうちで最低値の－72℃まで低下する傾向が見られた。
図3－17、図3－18に槽内の酸素、炭酸ガス濃度の経時変化を示す。酸素濃度は、時間が経過するに従い減少し400秒で4vo％となった。また、炭酸ガス濃度はピーケー値で90vol％まで上昇するが700秒以降は80vol％に下降した。
(3) RUN－3試験
図3－19に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から325秒まで0.7kg/sの放出速度で低下し、配管内圧力は0.46MPa/minの降下率で低下した。
図3－20に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と330秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。排気流量は、液化炭酸ガスの放出直後で初期排気流量が29.7㎥/minから15.3㎥/minに低下したのち、次第に上昇し始め18.5㎥/minに安定し液化炭酸ガスの放出がほぼ終了した点以降に一時的に20.5㎥/minに上昇し、以後低下した。
図3－21に槽内の平均温度変化を示す。槽内円周方向に4箇所、縦方向に9箇所計36点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に低下し325秒で－33℃まで低下した。
図3－22から図3－25では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。槽内温度は、どの方向においても同様な傾向を示し最低温度は－42℃となった。
図3－26、図3－27に槽内の酸素、炭酸ガス濃度の経時変化を示す。酸素濃度は、時間が経過するに従い減少し325秒付近で5vo％、700秒で4vo％となった。また、炭酸ガス濃度は700秒で88vol％となった。
(4) RUN－4試験
図3－28に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から310秒まで0.7kg/sの放出速度で低下し、配管内圧力は0.66MPa/minの降下率で低下した。
図 3-29 に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と 310 秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。排気流量は、液化炭酸ガスの放出直後で初期排気流量が 24.6 m³/min から 17.2 m³/min に低下し安定を示し、液化炭酸ガスの放出がほぼ終了した点以降に一時的に 20.5 m³/min に上昇し、以後低下した。

図 3-30 に槽内の平均温度変化を示す。槽内円周方向に 4 箇所・縦方向に 9 箇所計 36 点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に低下し 310 秒で -30℃まで低下した。

図 3-31 から図 3-34 では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。液化炭酸ガスは、槽内の下部一箇所で放出したため、槽内の下部温度が低い値になっている。ところが、槽内の上部温度はどの方向でも下部・中部温度が上昇する時点で急激に低下する傾向を示した。

図 3-35、図 3-36 に槽内の酸素、炭酸ガス濃度の経時変化を示す。酸素濃度は、時間が経過するに従い減少し 310 秒で 5vol%となった。炭酸ガス濃度は、ピーク値で 89vol%まで上昇し 450秒付近で 76vol%に一旦減少するが、次第に上昇し 700秒以降で 80vol%となった。

(5)RUN-5 試験

図 3-37 に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から 360秒まで 0.8kg/s の放出速度で低下し、配管内圧力は 0.23MPa/min の降下率で低下した。

図 3-38 に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と 360秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。排気流量は、液化炭酸ガスの放出直後で初期排気流量が 25.1 m³/min から 10.3 m³/min に低下したのち次第に上昇し始め 18m³/min に安定し、液化炭酸ガスの放出がほぼ終了した点以降に一時的に 24m³/min に上昇し、以後低下した。

図 3-39 に槽内の平均温度変化を示す。槽内円周方向に 4 箇所・縦方向に 9 箇所計 36点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に下降し 360秒で-58℃まで低下した。

図 3-40 から図 3-43 では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。槽内温度は、どの方向でも同様な傾向を示し、最低温度が-70℃となった。

図 3-44、図 3-45 に槽内の酸素、炭酸ガス濃度の経時変化を示す。酸素濃度は、時
間が経過するに従い減少し 360 秒付近で 5vol%となった。また、炭酸ガス濃度は 89vol%となった。
(6) RUN-6 試験
図 3−46 に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から 350 秒まで 0.7kg/s の放出速度で低下し、配管内圧力は 0.24MPa/min の降下率で低下した。
図 3−47 に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と 350 秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。排気流量は、液化炭酸ガスの放出直後に初期排気流量が 12.7m³/min から 7.5m³/min に低下したのち次第に上昇し、液化炭酸ガスの放出がほぼ終了した点以降に一時的に 23m³/min に上昇し、以後低下した。
図 3−48 に槽内の平均温度変化を示す。槽内円周方向に 4 箇所、縦方向に 9 箇所計 36 点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に低下し 350 秒で -30℃に収束した。
図 3−49 から図 3−52 に炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。液化炭酸ガスは、槽内の下部 1 箇所で放出したため、槽内の下部温度が極めて低温となった。上部温度は、どの方向でも下部温度が最低温度に到達するまでは一定温度を保ち、下部温度の上昇する時点で中部温度が低下する傾向が見られ、上部の温度変化は見られなかった。また、槽内下部の 1 箇所で液化炭酸ガスを放出すると、槽内温度の一部で -80℃の極低温となる傾向を示した。
図 3−53、図 3−54 に槽内の酸素、炭酸ガス濃度の経時変化を示す。槽内中部・下部での酸素濃度は、時間が経過するに従い 350 秒付近で 2.5vol%に減少し、700 秒で 4vol%を示した。また、炭酸ガス濃度は 400 秒付近で約 100vol%になり、その後低下し最終的に 92vol%となった。槽内上部の酸素濃度は、試験開始から 460 秒前後は変化なくその後 14vol%まで減少した。また、炭酸ガス濃度は最終的に 45vol%となった。
(7) RUN-7 試験
図 3−55 に液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から 220 秒まで 1.1kg/s の放出速度で低下し、配管内圧力は 0.69MPa/min の降下率で低下した。
図 3−56 に排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と 220 秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様な傾向を示した。
排気流量は、液化炭酸ガスの放出直後で初期排気流量が 34.3m³/min から 21.3m³/min に低下したのち次第に上昇始め 25.5m³/min に安定し、液化炭酸ガスの放出がほぼ終了
した点以降に一時的に 29.2m³/min に上昇し、以後低下した。

図 3-57 は槽内の平均温度変化を示す。槽内円周方向に 4 箇所・縦方向に 9 箇所計 36 点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に低下し 220 秒で−46℃まで低下した。

図 3-58 から図 3-61 では、液化炭酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。液化炭酸ガスは、槽内下部の 1 箇所で放出したため、極めて低温となった。上部温度は下部温度が最低温度に到達するまでは一定温度を保ち、下部温度が上昇する時点で中部の温度が低下する傾向が見られたが、上部の温度変化は見られなかった。

図 3-62、図 3-63 は槽内の酸素、炭酸ガスガス濃度の経時変化を示す。酸素濃度は、時間が経過するに従い 220 秒付近で 5vol%に減少し 700 秒で 4vol%となった。炭酸ガスガス濃度は 700 秒で 80vol%となった。

(8) RUN-8 試験

図 3-64 において液化炭酸ガス重量及び配管内圧力変動を示す。液化炭酸ガス重量は、放出開始から 240 秒まで 1.0kg/s の放出速度で低下し、配管内圧力は 0.68MPa/min の降下率で低下した。

図 3-65 において排気流量及び槽内圧力の変動を示す。液化炭酸ガス放出開始後のマイナス変動と 240 秒から一時的なプラス変動は、排気流量と槽内圧力ともほぼ同様の傾向を示した。排気流量は、液化炭酸ガスの放出直後で初期排気流量が 34.7m³/min から 23m³/min に低下したのち次第に上昇し始め 25.5m³/min に安定し、液化炭酸ガスの放出がほぼ終了した点以降に一時的に 28.2m³/min に上昇し、以後低下した。

図 3-66 は槽内の平均温度変化を示す。槽内円周方向に 4 箇所・縦方向に 9 箇所計 36 点の熱電対を設置したが、接点が多いことから各接点温度の単純平均値を表したものである。槽内の平均温度は、液化炭酸ガスの放出直後から次第に下降し 240 秒で−40℃まで低下した。

図 3-67 から図 3-70 における酸ガス放出時の槽内の温度変化をさらに詳しく観察するためにプロットしたものである。液化炭酸ガスは、槽内の下部 1 箇所で放出したため、下部の温度が極めて低温となった。上部温度は下部温度が最低温度に到達するまでは一定温度を保ち、下部温度が上昇する時点で中部温度が低下する傾向が見られ、最上部の温度変化は見られなかった。

槽内下部の 1 箇所で液化炭酸ガスを放出すると、槽内温度の一部では、−79℃の極低温となる傾向を示した。

図 3-71、図 3-72 にて槽内の酸素、炭酸ガスガス濃度の経時変化を示す。酸素濃度は、時間が経過すると従い 240 秒付近で 3.2vol%に減少し、700 秒で 4vol%となった。また、炭
酸ガス濃度は240秒で約95vol%に増加して、槽内上部の酸素・炭酸ガス濃度は、試験開始から100秒までは、中・下部の濃度と同じ傾向を示すが、その後は、下部・中部と異なる傾向を示し、最終的には下部・中部と同様な値に落ち着いた。
今回実施した試験結果から以下について考察した。
（1）槽内圧力の放出挙動について
①槽内の圧力挙動
図4-1に各試験の槽内圧力の経時変化を示す。槽内圧力は、液化炭酸ガス放出直後に最大約-600mmHgまで下降しすぐに上昇して一定に収束した後、短時間で槽内圧力が急上昇する傾向を示した。
槽内圧力が液化炭酸ガスの放出直後に下降するのは、空気が給気ダンパにより遮断され、代わりに液化炭酸ガスが供給配管を介して槽内へ供給される液化炭酸ガスの放出遅れによるものと考えられる。
槽内圧力が負圧のピークから次第に上昇して安定する時点の100秒から200秒付近では、液化炭酸ガスが気化されたことから、圧力のバランスがとれて一時期の一定を保つものと考える。
一方、槽内圧力が短時間で急上昇する傾向は、槽内温度の上昇と関係があるものと考えられる。ここで、試験結果の一例（RUN-5）として、図4-2に示す槽内圧力と温度の関係から、同じ時間帯で槽内圧力の変動と槽内温度が上昇することがわかった。また、ほかの試験でも槽内圧力及び槽内温度はほぼ同様な傾向を示した。
さらに、槽内圧力の急上昇について調べてみると、液化炭酸ガスはメカの知見では気温20℃の環境下で放出すると、約47%が雪状のドライアイスとして生成すると言われており、今回の槽内温度から考えると液化炭酸ガスの放出と同時に気化ガスに加えドライアイスも放出されていることが推測できる。
従って、液化炭酸ガスの放出時には、同時に液化炭酸ガスの一部がドライアイスとなり、それらが槽内に堆積し液化炭酸ガスの放出量が少なくなることで槽内温度が上昇し、堆積したドライアイスが周囲温度を奪い昇華して急激な圧力上昇に影響を及ぼしたものと考えられる。
②槽内温度
図4-3に各試験の槽内平均温度を示す。全域放出方式（RUN-1, 3, 5, 7）の最低平均温度が約-48℃に対し局所放出方式（RUN-2, 4, 6, 8）の最低平均温度は約-60℃となった。
これからの相異は全域放出方式では液化炭酸ガスを槽内均一に放出し、局所放出方式では液化炭酸ガスを槽内下部に集中して放出するためと考えられる。
（2）槽内圧力と排気流量の相関関係について
槽内圧力と排気流量の挙動は、時間が経過するにつれ同じ変化を示すことから図4-4に示す槽内圧力の経時変化を例にプロットの範囲を以下の区分に分け、槽内圧力と排気流量の相関関係を調べた。
① I区間：a～b点は液化炭酸ガスの放出開始から槽内圧力が安定する前までの区間
② II区間：b～c点は槽内圧力が安定している区間
③ III区間：c～d点は槽内圧力が急激に上昇しピークに到達するまでの区間

図4-5から図4-7の槽内圧力と排気流量の関係は、初期の排気流量と実排気流量の差から求め（以下、「排気流量差」という）時間で相関関係を見出した。図4-5にI区間の槽内圧力と排気流量の関係を示す。この区間は、槽内圧力が上記①の液化炭酸ガスの放出開始から安定前の範囲を示す。ここでは、槽内の排気流量差が高くなるにつれ槽内圧力も深くなり、I区間の排気流量差と槽内圧力の範囲は排気流量差が15m³/min、槽内圧力では0mmH₂Oから-600mmH₂Oの範囲となることがわかった。

図4-6にII区間の槽内圧力と排気流量の関係を示す。この区間は、上記②の槽内圧力が安定している範囲を示す。槽内圧力が安定していれば、排気流量差も安定を示し各プロット点は試験ごとに1箇所に集中する傾向となった。また、RUN-8では、排気流量差が約10m³/min付近で槽内圧力が約-500mmH₂Oに集中し、RUN-3では排気流量差が約12m³/min付近で槽内圧力が約-450mmH₂Oを示した。よって、II区間の排気流量差と槽内圧力の範囲として、排気流量差では、5m³/minから12m³/min、槽内圧力は約-100mmH₂Oから-500mmH₂Oとなることがわかった。

図4-7にIII区間の槽内圧力と排気流量の関係を示す。この区間は、上記③の槽内圧力が急激に上昇してピークに到達するまでの範囲を示す。槽内圧力と排気流量の関係は、RUN-3においてマイナス方向への圧力が深くなり、約10m³/minを示し排気流量差はRUN-8において約-430mmH₂O時に12m³/minとなった。よって、III区間の排気流量差と槽内圧力の範囲は排気流量差で3m³/minから12m³/min、槽内圧力では0mmH₂Oから-430mmH₂Oの範囲となることがわかった。

図4-8は、図4-5から図4-7で得られた結果から、I区間からIII区間の排気流量差と排気率について相関関係を調べた。排気率とは、各区間の槽内空気の排気流量差を初期排気流量で除することで定義して求めた。グラフは、以下の各区間に区分しプロットした。

① I区間：a点
② II区間：b～c点の平均値
③ III区間：d点

上記の関係から、排気流量差の範囲は約5m³/minから約13m³/minを示し、排気率はI区間に20%から40%、II区画は60%から75%、III区画は70%から85%となることがわかった。

以上の結果から、液化炭酸ガスの放出量を排気流量の約85%に設定すれば槽内圧力は負圧を維持できる見通しが得られた。
(3) 液化炭酸ガス放出速度・槽内温度降下速度と槽内圧力の相関関係について

図4-9は、図4-7に示すⅢ区画の槽内圧力の変化とc点までの液化炭酸ガスの放出速度及び槽内温度下降速度の関係を示したものである。槽内温度下降速度は、槽内圧力の上昇値を50mmH_{2}Oから250mmH_{2}Oの間で0.1℃/sから0.2℃/sの範囲を示し、槽内圧力上昇値が大きくなると槽内温度下降速度が増加することがわかった。また、液化炭酸ガス放出速度は、0.5kg/sから1.0kg/sの範囲を示し、槽内温度下降速度と同様に槽内圧力の急上昇が大きくなれば液化炭酸ガス放出速度も増加することがわかった。

従って、槽内温度下降速度が速ければドライアイス生成率も当然増加すると考えられるため、途中「(1)槽内圧力の放出挙動について」の変動要因を振り払った結果となった。逆に図4-7のⅢ区画の槽内圧力を小さくするためには、液化炭酸ガスをゆっくり放出すればよいと言える。
5. おわりに

本試験は、液化炭酸ガス放出時の圧力挙動及び槽内の圧力保持条件を把握するために実施した。試験より得られた結果を以下に示す。

(1) 試験では、槽内圧力を−50mmH₂O に設定後、給気ダンパ遮断と同時に液化炭酸ガスを放出した結果、槽内圧力は液化炭酸ガス放出開始直後に最大約−600mmH₂O まで下降して徐々に上昇し一定に収束後、短時間で急上昇する傾向が見られた。

(2) 液化炭酸ガス放出時に見られる槽内圧力の急激な圧力上昇として、槽内では液化炭酸ガスが定量的に放出されている間、槽内温度が低下して気化ガスよりもドライアイスの生成率が高くなる環境下となり、液化炭酸ガスの定量放出が終える時点から液化炭酸ガスの放出が少なくなるため、槽内に堆積したドライアイスが周囲の熱を奪い昇華し気化ガスに変化して圧力上昇に影響を及ぼしたものであると考えられる。

(3) 槽内平均最低温度は全域放出方式において約−48℃となり、局所放出方式では約−60℃となった。

(4) セル内圧力を負圧保持する条件として、液化炭酸ガス放出量は槽内空気の排気流量に対し約85%に設定することにより負圧を維持できる見通しが得られた。

(5) 槽内圧力の急激な圧力上昇を抑制するためには、液化炭酸ガスをゆっくり放出するのが効果的である。
6. 謝辞

本試験を実施するにあたり、試験設備の提供、指導・助言等、多大なご協力をいただいた技開部ならびに熱化学グループの三宅グループリーダ、宮原サブグループリーダ、大野チームリーダに深甚なる謝意を表する。また、データの編集・作成にご協力頂いた検査開発株式会社の工藤正和氏、小林正美氏、和田義勝氏に深く感謝の意を表する。
7. 参考文献

（1）堂野前寧、他四名：平成11年度 セル消火実証試験（I）技術報告書（資料番号：JNC TN9410 2001-021 2001年1月）

表2.2 压力挙動試験条件

<table>
<thead>
<tr>
<th>試験No.</th>
<th>ノズル型式</th>
<th>噴射ノズル</th>
<th>噴口面積</th>
<th>個数</th>
<th>温度条件</th>
<th>液化炭酸ガス計画放出量 (m³/min)</th>
<th>槽内空気計画排気流量 (m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN-1</td>
<td>TF8FC</td>
<td>7.07</td>
<td>3</td>
<td>21.2</td>
<td>常温</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>RUN-2</td>
<td>TF14FC</td>
<td>22.1</td>
<td>1</td>
<td>22.1</td>
<td>常温</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>RUN-3</td>
<td>TF8FC</td>
<td>7.07</td>
<td>3</td>
<td>21.2</td>
<td>加温</td>
<td>30.8</td>
<td>30.8</td>
</tr>
<tr>
<td>RUN-4</td>
<td>TF14FC</td>
<td>22.1</td>
<td>1</td>
<td>22.1</td>
<td>加温</td>
<td>30.8</td>
<td>30.8</td>
</tr>
<tr>
<td>RUN-5</td>
<td>TF12FC</td>
<td>15.9</td>
<td>3</td>
<td>47.7</td>
<td>常温</td>
<td>43.4*</td>
<td>35.0</td>
</tr>
<tr>
<td>RUN-6</td>
<td>TF20FC</td>
<td>44.2</td>
<td>1</td>
<td>44.2</td>
<td>常温</td>
<td>43.4*</td>
<td>35.0</td>
</tr>
<tr>
<td>RUN-7</td>
<td>TF12FC</td>
<td>15.9</td>
<td>3</td>
<td>47.7</td>
<td>加温</td>
<td>52.1*</td>
<td>35.0</td>
</tr>
<tr>
<td>RUN-8</td>
<td>TF20FC</td>
<td>44.2</td>
<td>1</td>
<td>44.2</td>
<td>加温</td>
<td>52.1*</td>
<td>35.0</td>
</tr>
</tbody>
</table>

注記：試験条件では、液化炭酸ガスの計画放出量と槽内空気計画排気流量を同じ流量と想定し、*印に示す計算より求めた液化炭酸ガス計画放出量は、槽内の最大排気流量を上回るため、最大排気能力である35m³/minに計画した。
表 3 实験結果のまとめ

<table>
<thead>
<tr>
<th>項目</th>
<th>槽内圧力 (mmH₂O)</th>
<th>排気流量 (m²/min)</th>
<th>槽内圧力安定時間 (s)</th>
<th>液化炭酸ガス放出速度 (kg/s)</th>
<th>液化炭酸ガス放出速度消費量及び消費時間</th>
<th>槽内温度 (℃)</th>
<th>槽内温度変動 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>初期値</td>
<td>最小値</td>
<td>安定値</td>
<td>最大値</td>
<td>初期値</td>
<td>最小値</td>
<td>安定値</td>
</tr>
<tr>
<td>RUN-1</td>
<td>-53.3</td>
<td>-120</td>
<td>50</td>
<td>140</td>
<td>12.5</td>
<td>8.7</td>
<td>12.5</td>
</tr>
<tr>
<td>RUN-2</td>
<td>-50.1</td>
<td>-260</td>
<td>-100</td>
<td>18</td>
<td>20.5</td>
<td>11.9</td>
<td>15.0</td>
</tr>
<tr>
<td>RUN-3</td>
<td>-54.0</td>
<td>-470</td>
<td>-420</td>
<td>-340</td>
<td>29.7</td>
<td>15.3</td>
<td>18.3</td>
</tr>
<tr>
<td>RUN-4</td>
<td>-49.9</td>
<td>-320</td>
<td>-190</td>
<td>-115</td>
<td>24.6</td>
<td>17.2</td>
<td>18.5</td>
</tr>
<tr>
<td>RUN-5</td>
<td>-51.5</td>
<td>-520</td>
<td>-180</td>
<td>30</td>
<td>25.1</td>
<td>10.3</td>
<td>18.0</td>
</tr>
<tr>
<td>RUN-6</td>
<td>-48.1</td>
<td>-140</td>
<td>-</td>
<td>180</td>
<td>12.7</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>RUN-7</td>
<td>-49.6</td>
<td>-580</td>
<td>-430</td>
<td>-210</td>
<td>34.3</td>
<td>21.3</td>
<td>25.5</td>
</tr>
<tr>
<td>RUN-8</td>
<td>-51.0</td>
<td>-520</td>
<td>-450</td>
<td>-350</td>
<td>34.7</td>
<td>23.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

注記：*印の（）内は、槽内圧力が安定し一定となった時間帯を示す。
図 2.1-1 試験装置図

F: 流量計
P: 圧力計
dP: 微差圧計
O₂: 酸素濃度計
T: 熱電対

・ 熱電対、噴射ノズル、微差圧計位置は、図21-2を参照のこと。
図2.1-2 槽内配置図
図3-1 液化炭酸ガス重量及び間管内圧力の経時変化（RUN-1試験）

図3-2 排気流量及び槽内圧力の経時変化（RUN-1試験）

図3-3 槽内平均温度の経時変化（RUN-1試験）
図3-4 槽内温度の経時変化（RUN-1試験）中心縦方向

図3-5 槽内温度の経時変化（RUN-1試験）0° 縦方向

図3-6 槽内温度の経時変化（RUN-1試験）90° 縦方向
図3-7 槽内温度の経時変化（RUN-1試験）270° 縦方向

図3-8 酸素濃度の経時変化（RUN-1試験）

図3-9 炭酸ガス濃度の経時変化（RUN-1試験）
図3-10 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-2試験）

図3-11 排気流量及び槽内圧力の経時変化（RUN-2試験）

図3-12 槽内平均温度の経時変化（RUN-2試験）
図3-13 槽内温度の経時変化（RUN-2試験）中心縦方向

図3-14 槽内温度の経時変化（RUN-2試験）0°縦方向

図3-15 槽内温度の経時変化（RUN-2試験）90°縦方向
図3-19 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-3試験）

図3-20 排気流量及び槽内圧力の経時変化（RUN-3試験）

図3-21 槽内平均温度の経時変化（RUN-3試験）
図3-25 槽内温度の経時変化（RUN-3試験）270° 縦方向

図3-26 酸素濃度の経時変化（RUN-3試験）

図3-27 炭酸ガス濃度の経時変化（RUN-3試験）
図3-28 混化炭酸ガス重量及び配管内圧力の経時変化（RUN-4試験）

図3-29 排気流量及び槽内圧力の経時変化（RUN-4試験）

図3-30 槽内平均温度の経時変化（RUN-4試験）
図3-31 槽内温度の経時変化（RUN-4試験）中心縦方向

図3-32 槽内温度の経時変化（RUN-4試験）0° 縦方向

図3-33 槽内温度の経時変化（RUN-4試験）90° 縦方向
図3-34 槽内温度の経時変化（RUN-4試験）270° 縦方向

図3-35 酸素濃度の経時変化（RUN-4試験）

図3-36 炭酸ガス濃度の経時変化（RUN-4試験）
図3-37 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-5試験）

図3-38 排気流量及び槽内圧力の経時変化（RUN-5試験）

図3-39 槽内平均温度の経時変化（RUN-5試験）
図3-40 槽内温度の経時変化（RUN-5試験）中心縦方向

図3-41 槽内温度の経時変化（RUN-5試験）0°縦方向

図3-42 槽内温度の経時変化（RUN-5試験）90°縦方向
図3-43 槽内温度の経時変化（RUN-5試験）270°縦方向

図3-44 酸素濃度の経時変化（RUN-5試験）

図3-45 炭酸ガス濃度の経時変化（RUN-5試験）
図3-46 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-6試験）

図3-47 排気流量及び槽内圧力の経時変化（RUN-6試験）

図3-48 槽内平均温度の経時変化（RUN-6試験）
図3-55 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-7試験）

図3-56 排気流量及び槽内圧力の経時変化（RUN-7試験）

図3-57 槽内平均温度の経時変化（RUN-7試験）
図3-58 槽内温度の経時変化（RUN-7試験）中心縦方向

図3-59 槽内温度の経時変化（RUN-7試験）0°縦方向

図3-60 槽内温度の経時変化（RUN-7試験）90°縦方向
図3-61 槽内温度の経時変化（RUN-7試験）270° 縦方向

図3-62 酸素濃度の経時変化（RUN-7試験）

図3-63 炭酸ガス濃度の経時変化（RUN-7試験）
図3-64 液化炭酸ガス重量及び配管内圧力の経時変化（RUN-8試験）

図3-65 排気流量及び槽内圧力の経時変化（RUN-8試験）

図3-66 槽内平均温度の経時変化（RUN-8試験）
図3-67 槽内温度の経時変化(RUN-8試験)中心縦方向

図3-68 槽内温度の経時変化(RUN-8試験)0° 縦方向

図3-69 槽内温度の経時変化(RUN-8試験)90° 縦方向
図3-70 極内温度の経時変化（RIN-8試験）270°縦方向

図3-71 酸素濃度の経時変化（RUN-8試験）

図3-72 炭酸ガス濃度の経時変化（RUN-8試験）
図4-1 槽内圧力の経時変化

図4-2 槽内圧力及び槽内平均温度の経時変化（一例）
図4-3 槽内平均温度の経時変化
図4-4 槽内圧力の経時変化

図4-5 I区間の槽内圧力と排気流量の関係
図4-6 Ⅱ区間の槽内圧力と排気流量の関係

図4-7 Ⅲ区間の槽内圧力と排気流量の関係
図4-8 排気流量と排気率の関係

図4-9 液化炭酸ガス放出速度及び槽内温度降下速度とc-d間の槽内圧力の関係
写真2.3-1 主な装置の外観

① 大型排煙処理装置操作盤
② 液化炭酸ガス供給装置
③ 微差圧計
④ 酸素濃度計
⑤ 給気ダンパ
⑥ 排気流量計
⑦ 排気プロア
試験条件における噴射ノズルの選定について

本試験の噴射ノズルは、セル消火実証試験（I）の試験結果をもとに噴射ノズル3個を使用する全域放出方式と喷射ノズル1個を使用する局所放出方式に区分した。また、噴射ノズル噴口面積を2倍した場合の圧力挙動の違いを見るためのノズルの選定を行った。

以下にセル消火実証試験（I）で使用した噴射ノズルの噴口面積と液化炭酸ガスの放出量を示す。

<table>
<thead>
<tr>
<th>使用ノズル型式</th>
<th>ノズル噴口面積（mm²）</th>
<th>液化炭酸ガス放出量（m³/min）</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF10FC</td>
<td>11.0</td>
<td>11.6 18.12</td>
</tr>
<tr>
<td>TF14FC</td>
<td>22.1</td>
<td>22.5 30.78</td>
</tr>
<tr>
<td>係数：k</td>
<td>2</td>
<td>1.93 1.69</td>
</tr>
</tbody>
</table>

*係数kは、ノズル噴口面積と液化炭酸ガス放出量の値を比率（TF10FC/TF14FC）で表したものである。

セル消火実証試験（I）では、実験室内に噴射ノズルを1個設置して試験を実施したため、これを局所放出方式と定義した。上表より、噴射ノズルが2倍になれば液化炭酸ガス放出量は約2倍になることを示している。喷射ノズルには、最小喷口面積が7.07mm²のものがある。この噴射ノズルを用いて全域放出方式を考えると、喷射ノズルの噴口面積は7.07 mm²×3 個＝21.2 mm²となり、上表を比較すると噴射ノズルの噴口面積は22.1 mm²に相当する。

従って、本試験で使用する噴射ノズルは、噴口面積が22.1 mm²相当を基準として選定するものとした。

① 全域放出方式の噴射ノズルは、ノズル噴口面積が22.1 mm²に相当するノズル噴口面積をノズル個数（3個）で除した値に近似する噴射ノズル（ノズル噴口面積22.1 mm²÷3個＝7.37≈7.07：TF8FC）を選定した。
② 局所放出方式のノズルは、喷口面積が22.1 mm²（TF14FC）を選定した。
③ 噴射ノズル噴口面積を2倍した場合、全域放出方式の噴射ノズルはノズル噴口面積が44.2 mm²に相当するノズル噴口面積をノズル個数（3個）で除した値に近似する噴射ノズル（ノズル噴口面積44.2 mm²÷3個＝14.7≈15.9：TF12FC）を選定した。
④ 噴射ノズル噴口面積を2倍した場合、噴口面積が44.2 mm²（TF20FC）を選定した。
なお、噴射ノズルの型式と仕様は、付録－2に示す。
注記
1. 型式番号：DN-013号
2. 材質：C3604BD

<table>
<thead>
<tr>
<th>ノズル型式</th>
<th>口径</th>
<th>A (mm)</th>
<th>B</th>
<th>H (mm)</th>
<th>噴口面積 (mm²)</th>
<th>放射角</th>
<th>重量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF 8FC</td>
<td>8</td>
<td></td>
<td></td>
<td>14.3</td>
<td>7.07</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>TF10FC</td>
<td>48</td>
<td>R1/4</td>
<td></td>
<td></td>
<td>11.0</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>TF12FC</td>
<td>10A</td>
<td>R3/8</td>
<td></td>
<td>17.5</td>
<td>15.9</td>
<td>120°</td>
<td>40</td>
</tr>
<tr>
<td>TF14FC*</td>
<td>10A</td>
<td>R3/8</td>
<td></td>
<td>17.5</td>
<td>22.1</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>TF20FC</td>
<td>10A</td>
<td>R3/8</td>
<td></td>
<td></td>
<td>44.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

＊印は、セルより実証試験（I）で使用した噴射ノズルを示す。
液化炭酸ガスポンベの本数の算出

本試験を実施する前に槽内空気の排気流量と液化炭酸ガスの計画放出量を想定する。下図から、液化炭酸ガス放出量を試験槽の給気側とし、排気流量と液化炭酸ガス放出量が同等量として計算した。

【試験条件】
試験槽容積 \(V \) ： 100 （\(m^3 \)）
槽内炭酸ガス濃度： 70 （vol%）
\(Q_1 \) ： 給気
\(Q_2 \) ： 排気
\(Q_1 = Q_2 = 0.375 \left(\frac{m^3}{\text{min}} \right) \)
*)セリ消火試験（I）の結果から算出

\(V_{co_2} \) ：炭酸ガス体積 （\(m^3 \)）
\(V_{co_2} / V \) ：炭酸ガス濃度 （vol%）

単位時間あたりの炭酸ガスの体積は、

\[dV_{co_2} / dt = Q_1 - Q_2 \cdot \frac{V_{co_2}}{V} \]

\[V_{co_2} = Q_1 \cdot \frac{V}{Q_2} + e^{-\frac{V}{V_1}} \]

\(Q_1 = Q_2 \) （at \(t = 0 \), \(V_{co_2} = 0 \)）

\[V_{co_2} = V - V \cdot e^{-\frac{Q_1}{V}} \]

\[V - V_{co_2} = V \cdot e^{-\frac{Q_1}{V}} \]

\[\left(1 - \frac{V_{co_2}}{V} \right) = e^{-\frac{Q_1}{V}} \]

よって、炭酸ガス濃度が70vol%に到達する時間は、

\[t = \frac{V}{Q_2} \ln \left(1 - \frac{V_{co_2}}{V} \right) = \frac{-100}{0.375} \ln \left(1 - \frac{70}{100} \right) = -266.7 \ln 0.3 = 321.1 \cdots \cdots (1) \]

放出した炭酸ガスの容積は、

\[V_{co_2} = Q_2 \times t = 0.375 \times 321.1 = 121.98 \ (m^3) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2) \]
消防設備概論の深部火災より、深部火災を考慮したときの係数は

\[k = 2.67 \left(\frac{kg}{m^3} \right) \]

(3)

(2) × (3) より、深部火災に必要な炭酸ガス量は

\[V_{CO_2} = 121.98 \times 2.67 = 325.74 \ (kg) \]

(4)

試験では、液化炭酸ガスポンベ内容積 46.7ℓ % のものを使用し、充てん比を 1.5 とすると液化炭酸ガス 1 本あたりの重量は

\[W = \frac{46.7}{1.5} = 31.3 \ (kg) \]

(5)

よって、液化炭酸ガスポンベの必要本数は

\[\frac{W_{CO_2}}{W} = \frac{325.74}{31.3} = 10.4 \approx 11 \text{ 本} \]

参考文献

(1) 消防設備概論編集委員会: 消防設備概論 日本工業出版 (1972年)