高速増殖原型炉「もんじゅ」

燃料取扱貯蔵設備の運転・保守経験(1)

報告書

[総合機能試験完了後から平成8年3月まで]

平成8年3月

動力炉・核燃料開発事業団

高速増殖炉もんじゅ建設所
この資料は、動燃事業団社内における検討を目的とする社内資料です。ついては複写、転載、引用等を行わないよう、また第三者への開示又は内容漏洩がないよう管理して下さい。また今回の開示目的以外のことには使用しないよう注意して下さい。

本資料についての問い合わせは下記に願います。
〒919－12　福井県敦賀市白木2丁目1
動燃・核燃料開発事業団
高速増殖炉もんじゅ建設所 技術課
高速増殖原型炉もんじゅ

燃料取扱貯蔵設備の運転・保守経験(1)

高速増殖炉もんじゅ建設所
プラント第一課・第二課燃取グループ

要旨

「もんじゅ」の燃料取扱貯蔵設備は、平成3年4月に据付を完了した後、5月から総合機能試験を開始し平成4年8月に終了した。平成4年12月に設備移管を受け性能試験に入った。燃料装荷試験においては炉心燃料198体の炉内への移送、炉心への装荷を燃料取扱設備により行った。この間大きなトラブルもなく、円滑に運転が行われ平成8年4月5日168体で初臨界を達成した。燃料装荷以降も出力分布試験、模擬体洗浄処理運転を実施しており、平成4年から毎年設備点検を実施して設備の健全性維持に努めている。

本報告書は総合機能試験完了以降の燃料取扱設備の運転及び保守についてまとめたもので、この間に経験したトピックスを記載するとともに設備の信頼性向上に向けた今後の検討事項についても述べたものである。
報告者

長広 義彦 : プラント第二課
廣部 岩男 : プラント第二課
山田多佐士 : プラント第二課
内藤 栄一 : プラント第一課
小幡 宏幸 : プラント第二課
浜野 知治 : プラント第二課
高木 剛也 : プラント第一課
皆藤 泰昭 : プラント第二課
今村 弘章 : プラント第二課

甲高 義則 : 現 東海事業所再処理工場処理部化学処理第一課
井関 淳 : 現 本社総務部訴訟対策室
大場 俊雄 : 現 本社総務部訴訟対策室
池田 博嗣 : 現 日本原子力発電株式会社
Operation and Maintenance Experience

on the Fuel Handling Systems and Storage Facilities of 'MONJU' (1)

Monju Construction Office
Operation Section & Maintenance Section
of Fuel Handling Group

ABSTRACT

Construction of the 'Monju' fuel handling systems was completed in April 1992. From March 1991 to August 1992, pre-commissioning tests were carried out. In December 1992, all the systems of Monju were transferred to PNC, and commissioning tests and reactor physics tests, were started. For the first time, during these physics tests, the fuel handling systems were operated for one of the commissioning tests 'Loading to Criticality without significant problems. 168 fuel sub-assemblies were loaded into the core and the first criticality was achieved on 5th April 1994.

The fuel handling systems continued in operation for the 'Loading to Full Size of the Core', power distribution test and for cleaning discharged dummy sub-assemblies.

To keep these fuel handling systems working smoothly and satisfactorily annual maintenance has been carried out since 1992. This paper describes the operation and maintenance experience of fuel handling systems after the pre-commissioning tests and future study items for system reliability improvement.
目次

1. はじめに ... 1

2. 燃料取扱貯蔵設備の概要 .. 3
 2. 1 しゃべいプラグ ... 18
 2. 2 燃料交換設備 .. 30
 2. 3 燃料出入設備 .. 44
 2. 4 炉外燃料貯蔵設備 ... 59
 2. 5 燃料検査設備 .. 70
 2. 6 燃料洗浄設備 .. 72
 2. 7 燃料缶詰設備 .. 75
 2. 8 水中燃料貯蔵設備 ... 80
 2. 9 新燃料受入貯蔵設備 ... 86
 2.10 燃料搬出設備 .. 91
 2.11 燃取系計算機システム ... 93
 2.12 共通保修設備 .. 99
 2.13 固体廃棄物貯蔵プール設備 ... 103
 2.14 その他関連設備 .. 105

3. 燃料取扱貯蔵設備の運転・保守経験 ... 100
 3. 1 しゃべいプラグ .. 109
 3.1.1 しゃべいプラグの運転実績 ... 109
 3.1.2 しゃべいプラグの保守実績 ... 111
 3.1.3 しゃべいプラグの運転、保守における特記事項 111
3. 2 燃料交換設備 ... 123
 3.2.1 燃料交換設備の運転実績 .. 123
 3.2.2 燃料交換設備の保守実績 .. 123
 3.2.3 燃料交換設備の運転、保守における特記事項 124

3. 3 燃料出入設備 ... 147
 3.3.1 燃料出入設備の運転実績 .. 147
 3.3.2 燃料出入設備の保守実績 .. 147
 3.3.3 燃料出入設備の運転、保守における特記事項 148

3. 4 炉外燃料貯蔵設備 .. 179
 3.4.1 炉外燃料貯蔵設備の運転実績 179
 3.4.2 炉外燃料貯蔵設備の保守実績 179
 3.4.3 炉外燃料貯蔵設備の運転、保守における特記事項 180

3. 5 燃料検査設備 ... 191
 3.5.1 燃料検査設備の運転実績 .. 191
 3.5.2 燃料検査設備の保守実績 .. 191
 3.5.3 燃料検査設備の運転、保守における特記事項 191

3. 6 燃料洗浄設備 ... 194
 3.6.1 燃料洗浄設備の運転実績 .. 194
 3.6.2 燃料洗浄設備の保守実績 .. 194
 3.6.3 燃料洗浄設備の運転、保守における特記事項 194

3. 7 燃料缶詰設備 ... 202
 3.7.1 燃料缶詰設備の運転実績 .. 202
 3.7.2 燃料缶詰設備の保守実績 .. 202
 3.7.3 燃料缶詰設備の運転、保守における特記事項 202

3. 8 水中燃料貯蔵設備 .. 206
 3.8.1 水中燃料貯蔵設備の運転実績 206
 3.8.2 水中燃料貯蔵設備の保守実績 206
 3.8.3 水中燃料貯蔵設備の運転、保守における特記事項 206

3. 9 新燃料受入貯蔵設備 ... 211
 3.9.1 新燃料受入貯蔵設備の運転実績 211
 3.9.2 新燃料受入貯蔵設備の保守実績 211
 3.9.3 新燃料受入貯蔵設備の運転、保守における特記事項 212
3. 10 燃料搬出設備 215
3. 10.1 燃料搬出設備の運転実績 215
3. 10.2 燃料搬出設備の保守実績 215
3. 10.3 燃料搬出設備の運転、保守における特記事項 215

3. 11 燃取系計算機システム 216
3. 11.1 燃取系計算機システムの運転実績 216
3. 11.2 燃取系計算機システムの保守実績 216
3. 11.3 燃取系計算機システムの運転、保守における特記事項 216

3. 12 共通維修設備 217
3. 12.1 共通維修設備の運転実績 217
3. 12.2 共通維修設備の保守実績 218
3. 12.3 共通維修設備の運転、保守における特記事項 218

3. 13 固体廃棄物貯蔵プール設備 224
3. 13.1 固体廃棄物貯蔵プール設備の運転実績 224
3. 13.2 固体廃棄物貯蔵プール設備の保守実績 224
3. 13.3 固体廃棄物貯蔵プール設備の運転、保守における特記事項 224

3. 14 その他関連設備 228
3. 14.1 原子炉機器輸送ケーブル等の取扱、保守における特記事項 228
3. 14.2 原子炉格納容器機器ハッチ開閉における特記事項 229

3. 15 設備改善等 233
3. 15.1 設備改善等の内容 233

3. 16 燃料取扱設備の運転・保守経験のまとめ 283

4. 今後の課題 309
4. 1 点検 310
4. 2 設備改造、高度化検討 312

5. おわりに 321

6. 参考図書 322
表 リ ス ト

第１－１表 高速増殖原型炉もんじゅ試験工程表 2
第２－１表 系統構成と主要機能 .. 6
第2.11－1表 燃焼系運転監視対象設備 .. 96
第3.8－1 表 模擬体乾燥実績 .. 207
第3.15－1表 炉外燃料貯蔵槽単式床ドアバルブ利用年表 238
第3.15－2表 ＥＶＳＴ床ドアバルブ（６連式）据付工事工程表 250
第3.15－3表 炉外燃料貯蔵槽 ６連式ドアバルブ使用実績 252
第3.15－4表 2次系洗浄設備据付工事工程表 277
第3.15－5表 仮設仮製作工事表 .. 282
第3.16－1表 燃焼設備燃料等取扱実績 .. 287
第3.16－2表 燃焼設備燃料等取扱実績（平成７年） 291
第3.16－3表 平成４年度設備点検項目 .. 295
第3.16－4表 平成４年度燃焼設備定期点検実績工程表 296
第3.16－5表 平成５年度設備点検項目 .. 298
第3.16－6表 Ｈ５年度設備点検 .. 300
第3.16－7表 平成６年度設備点検項目 .. 302
第3.16－8表 平成６年度設備点検実績工程表 304
第3.16－9表 平成７年度設備点検項目 .. 306
第3.16－10表 平成７年度設備点検実績工程表 308
第4.1－1 表 燃焼設備点検基準表（案） 311

図 リ ス ト

第２－１図 燃料取扱及び貯蔵設備 ... 5
第２－２図 燃料等の搬出入 ... 8
第２－３図 燃料等の取扱ルート .. 9
第２－４図 基本運転スケジュール .. 10
第２－５図 燃料取扱設備 .. 11
<table>
<thead>
<tr>
<th>番号</th>
<th>テキスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>第2.4-6図</td>
<td>回転ラック－案内装置案内筒位置関係図</td>
</tr>
<tr>
<td>第2.4-7図</td>
<td>E V S T 6連式ドアバルブ</td>
</tr>
<tr>
<td>第2.4-8図</td>
<td>炉外燃料貯蔵設備の冷却系の概要</td>
</tr>
<tr>
<td>第2.5-1図</td>
<td>燃料検査設備系統図</td>
</tr>
<tr>
<td>第2.6-1図</td>
<td>燃料洗浄設備系統図</td>
</tr>
<tr>
<td>第2.6-2図</td>
<td>移送停止時の燃料間接冷却</td>
</tr>
<tr>
<td>第2.7-1図</td>
<td>燃料缶詰装置構造説明図</td>
</tr>
<tr>
<td>第2.7-2図</td>
<td>仮詰缶回転固定機構原理図</td>
</tr>
<tr>
<td>第2.7-3図</td>
<td>仮詰缶</td>
</tr>
<tr>
<td>第2.8-1図</td>
<td>使用済燃料取扱ルート図</td>
</tr>
<tr>
<td>第2.8-2図</td>
<td>燃料移送機駆動原理図</td>
</tr>
<tr>
<td>第2.8-3図</td>
<td>燃料移送機グリッパ構造図</td>
</tr>
<tr>
<td>第2.8-4図</td>
<td>燃料池水冷却装置系統図</td>
</tr>
<tr>
<td>第2.9-1図</td>
<td>新燃料を受入れ貯蔵する設備の概要</td>
</tr>
<tr>
<td>第2.9-2図</td>
<td>新燃料取扱ルート図</td>
</tr>
<tr>
<td>第2.9-3図</td>
<td>地下台車新燃料予熱装置の系統構成</td>
</tr>
<tr>
<td>第2.10-1図</td>
<td>燃料を搬出する設備の概要</td>
</tr>
<tr>
<td>第2.11-1図</td>
<td>燃取系計算機システム構成図</td>
</tr>
<tr>
<td>第2.11-2図</td>
<td>燃取系監視制御システム</td>
</tr>
<tr>
<td>第2.11-3図</td>
<td>燃取系自動化運転範囲</td>
</tr>
<tr>
<td>第2.12-1図</td>
<td>機器洗浄設備の概要</td>
</tr>
<tr>
<td>第2.12-2図</td>
<td>機器洗浄工程（燃取機器洗浄槽）</td>
</tr>
<tr>
<td>第2.13-1図</td>
<td>固体廃棄物貯蔵プール洗浄系系統図</td>
</tr>
<tr>
<td>第3.1-1図</td>
<td>ナトリウム蒸着防止構造</td>
</tr>
<tr>
<td>第3.1-2図</td>
<td>シリコンオイル漏洩ルート</td>
</tr>
<tr>
<td>第3.1-3図</td>
<td>持上動作説明図</td>
</tr>
<tr>
<td>第3.1-4図</td>
<td>停滞発生時チャート</td>
</tr>
<tr>
<td>第3.1-5図</td>
<td>シール構造と作動原理</td>
</tr>
<tr>
<td>第3.1-6図</td>
<td>シリンダの動作とこれに伴うシールの作動</td>
</tr>
<tr>
<td>第3.1-7図</td>
<td>フリーズシール仕切板 ヒータ・熱電対配置展開図</td>
</tr>
<tr>
<td>第3.2-1図</td>
<td>パンタグラフ取納狀態</td>
</tr>
<tr>
<td>第3.2-2図</td>
<td>パンタグラフ機構の分解点検範囲説明図</td>
</tr>
<tr>
<td>第3.2-3図</td>
<td>パンタグラフアームの曲がり測定結果(1/4～4/4)</td>
</tr>
<tr>
<td>第3.2-4図</td>
<td>燃料交換装置Nα洗浄前Nα付着状況（液面近傍）</td>
</tr>
<tr>
<td>第3.2-5図</td>
<td>炉内中継装置 回転ラック駆動装置説明図</td>
</tr>
<tr>
<td>第3.2-6図</td>
<td>インデックスハンドル構造図</td>
</tr>
<tr>
<td>第3.2-7図</td>
<td>インデックスハンドル</td>
</tr>
<tr>
<td>第3.2-8図</td>
<td>燃料交換装置グリッパのナトリウム付着状態</td>
</tr>
<tr>
<td>図</td>
<td>内容</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>第3.2-9 図</td>
<td>炉内中継装置N a洗浄前N a付着状況</td>
</tr>
<tr>
<td>第3.2-10 図</td>
<td>爪開閉軸の回転防止機構説明図</td>
</tr>
<tr>
<td>第3.2-11 図</td>
<td>点検箇所詳細図(1/3〜3/3)</td>
</tr>
<tr>
<td>第3.2-12 図</td>
<td>構造変更説明図</td>
</tr>
<tr>
<td>第3.3-1 図</td>
<td>テーブ固定ボルト破損状況</td>
</tr>
<tr>
<td>第3.3-2 図</td>
<td>従来型サイフォン機能向上型ドリップパン比較図</td>
</tr>
<tr>
<td>第3.3-3 図</td>
<td>底部に浅い溝を設けた形状</td>
</tr>
<tr>
<td>第3.3-4 図</td>
<td>サイフォン孔部に縦穴を設け周囲に傾斜を付けた形状</td>
</tr>
<tr>
<td>第3.3-5 図</td>
<td>燃料出入口設備</td>
</tr>
<tr>
<td>第3.3-6 図</td>
<td>本体Aグリッパ駆動原理図</td>
</tr>
<tr>
<td>第3.3-7 図</td>
<td>新燃料をつかわない運転時本体Aグリッパ昇降トルク比較図</td>
</tr>
<tr>
<td>第3.3-8 図</td>
<td>燃料交換時の本体AテーブN a中流渇ストローク</td>
</tr>
<tr>
<td>第3.3-9 図</td>
<td>グリッパ及び昇降テーブへのN a付着状況</td>
</tr>
<tr>
<td>第3.3-10 図</td>
<td>スクレーブ</td>
</tr>
<tr>
<td>第3.3-11 図</td>
<td>対策前N a付着状況</td>
</tr>
<tr>
<td>第3.3-12 図</td>
<td>スクレーブ構造図</td>
</tr>
<tr>
<td>第3.3-13 図</td>
<td>ヒータ及び保温材の設置</td>
</tr>
<tr>
<td>第3.3-14 図</td>
<td>スクレーブ部及び駆動装置内部状況</td>
</tr>
<tr>
<td>第3.3-15 図</td>
<td>ドアパルプN a付着状況(1/2〜2/2)</td>
</tr>
<tr>
<td>第3.3-16 図</td>
<td>駆動軸シールリップ形状比較図</td>
</tr>
<tr>
<td>第3.3-17 図</td>
<td>ナトリウム滴下状態図（現状）</td>
</tr>
<tr>
<td>第3.3-18 図</td>
<td>ナトリウム滴下対策構造図</td>
</tr>
<tr>
<td>第3.4-1 図</td>
<td>オイルスタバリー管ルート変更図</td>
</tr>
<tr>
<td>第3.4-2 図</td>
<td>真空ポンプ構造図</td>
</tr>
<tr>
<td>第3.4-3 図</td>
<td>仮設フィルター配管図</td>
</tr>
<tr>
<td>第3.4-4 図</td>
<td>カートリッジフィルター組込み図</td>
</tr>
<tr>
<td>第3.6-1 図</td>
<td>脱湿確認試験結果</td>
</tr>
<tr>
<td>第3.6-2 図</td>
<td>フィルタ通過試験結果</td>
</tr>
<tr>
<td>第3.6-3 図</td>
<td>N a定量洗浄における水素濃度、電導度</td>
</tr>
<tr>
<td>第3.8-1 図</td>
<td>清掃前の燃料移送機走行トルク</td>
</tr>
<tr>
<td>第3.9-1 図</td>
<td>地下台車収納管内滴下N a除去方法の改善</td>
</tr>
<tr>
<td>第3.12-1 図</td>
<td>D P 3体洗浄状態詳細図</td>
</tr>
<tr>
<td>第3.13-1 図</td>
<td>ろ過器構造図</td>
</tr>
<tr>
<td>第3.14-1 図</td>
<td>分解点検結果</td>
</tr>
<tr>
<td>第3.14-2 図</td>
<td>連結板・トロリ接続ボルト処置対策図</td>
</tr>
<tr>
<td>第3.14-3 図</td>
<td>トロリと連結板の接続図</td>
</tr>
<tr>
<td>第3.15-1 図</td>
<td>旧設計6連式床ドアパルプ</td>
</tr>
<tr>
<td>第3.15-2 図</td>
<td>「もじじゅ」床ドアパルプ</td>
</tr>
<tr>
<td>第3.15-3 図</td>
<td>ドアパルプ移設作業手順</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>第3.15-4</td>
<td>燃料交換作業工程の比較検討結果</td>
</tr>
<tr>
<td>第3.15-5</td>
<td>ＥＶＳＴ６連式ドアバルブ</td>
</tr>
<tr>
<td>第3.15-6</td>
<td>回転移動方式弁体</td>
</tr>
<tr>
<td>第3.15-7</td>
<td>燃料出入機との接続部（従来）</td>
</tr>
<tr>
<td>第3.15-8</td>
<td>燃料出入機との接続部（6連式）</td>
</tr>
<tr>
<td>第3.15-9</td>
<td>間接冷却流路形成</td>
</tr>
<tr>
<td>第3.15-10</td>
<td>セルフオリエンテーション機能</td>
</tr>
<tr>
<td>第3.15-11</td>
<td>新燃料方位調整治具機器外形図</td>
</tr>
<tr>
<td>第3.15-12</td>
<td>新燃料受入貯蔵設備～炉内までの炉心構成要素の角度設定フロー</td>
</tr>
<tr>
<td>第3.15-13</td>
<td>通信設備システム構成図</td>
</tr>
<tr>
<td>第3.15-14</td>
<td>改善後の乾燥ガスフロー図</td>
</tr>
<tr>
<td>第3.15-15</td>
<td>ドリップパン複数個洗浄治具構造図</td>
</tr>
<tr>
<td>第3.15-16</td>
<td>系統の概要</td>
</tr>
<tr>
<td>第3.15-17</td>
<td>洗浄の姿図</td>
</tr>
<tr>
<td>第3.15-18</td>
<td>2次系機器洗浄設備主要機器位置図</td>
</tr>
<tr>
<td>第3.15-19</td>
<td>仏仏仏Ａ、Ｂ構造図</td>
</tr>
<tr>
<td>第3.15-20</td>
<td>仏仏仏使用スケジュール</td>
</tr>
<tr>
<td>第3.16-1</td>
<td>燃料取扱貯蔵設備運転実績</td>
</tr>
<tr>
<td>第3.16-2</td>
<td>燃料装荷工程</td>
</tr>
<tr>
<td>第3.16-3</td>
<td>燃料取扱貯蔵設備保守実績</td>
</tr>
</tbody>
</table>

240 | 245 | 246 | 247 | 248 | 249 | 255 | 258 | 259 | 262 | 265 | 266 | 274 | 275 | 276 | 279 | 281 | 285 | 288 | 292
1. はじめに

燃料取扱貯蔵設備（以下「燃取設備」という）は、平成3年4月に据付を完了し、5月から、総合機能試験（以下「SKS」という）の大気中試験を開始した。10月からは順次、ナトリウム中試験に移行し、平成4年8月に全ての試験を終了した。

この間の平成4年7月には、最初の炉心燃料の施設内への受入れを行う等一部の設備は先行して使用を開始したが、2月に全設備の設備移管を受けたのち、動燃で運転、保守を実施してきている。

平成5年10月から燃料装荷を開始し、11月に一時中断したが平成6年1月から外側炉心燃料装荷を再開し、4月5日に168体で初臨界を達成し、5月20日初期炉心構成を完了した。以降も出力分布試験で試験用集合体の取扱いを行った。

平成7年2月から性能試験は出力試験段階へ進み、フラッシュタンク等のトラブルがあったものの8月29日初発電を達成し、その後も順調に出力を上昇し、40%の試験を終盤に差し迫った12月8日、突然の2次系Na漏えい事故が発生した。

燃取設備の平成7年の運転は、運転以降の燃料交換計画から燃料装荷に伴って炉外燃料貯蔵槽に炉心から取り出した模擬燃料体を早期に取り出す要求を受け、2月及び8月～11月にかけて198体を燃料池に洗浄搬出した。また、4月から7月にかけて炉外燃料貯蔵槽床ダアバルブの6連化改造工事を実施した。点検については、

・平成4年度設備点検を7月～9月
・平成5年度点検（燃料装荷前点検）を5月～8月及び12月～平成6年1月
・平成6年度点検を10月～平成7年1月
・平成7年度点検を11月～平成8年3月で毎年行ってきている。

なお、第1～1表に高速増殖型炉もんじゅのこれまでの主要な試験工程を示す。

本報告書は、燃取設備のSKS完了後（「K4年8月）から平成8年3月までの約3年半にわたる燃取設備の運転及び保守実績についてまとめたものである。「もんじゅ」の燃取設備はFBRの特徴であるリードチップ混合燃料物燃料及びNaを取扱っており、これまでの運転、保守経験を今後の設備点検の参考とするとともに今後も継続してその経験を記録にとどめ、実証炉以降の設計、運転及び保守等に反映されることを期待する。
<table>
<thead>
<tr>
<th>年</th>
<th>H 4 年</th>
<th>H 5 年</th>
<th>H 6 年</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目 月</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td>10 11 12</td>
</tr>
<tr>
<td>主要工程</td>
<td>総合機能試験 (ナトリウム中)</td>
<td>FHM 試験</td>
<td>10/13 内側燃料装換開始</td>
</tr>
<tr>
<td></td>
<td>7/7 中心燃料投入</td>
<td>プラント特性予備試験</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>△</td>
<td>燃料装換前検点検</td>
<td>燃料装荷前検点検</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>燃料取扱設備</td>
<td>SRS-500-Na-1.2</td>
<td>しゃべりプラント昇温試験</td>
<td>平成5年度点検(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>燃料装換設備試験</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年</td>
<td>H 6 年</td>
<td>H 7 年</td>
<td>H 8 年</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>項目 月</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td>10 11 12</td>
</tr>
<tr>
<td>主要工程</td>
<td>4/5 初期冷試験(188体)</td>
<td>性能試験</td>
<td>核加熱試験開始</td>
</tr>
<tr>
<td></td>
<td>△</td>
<td>低周波装置試験</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料取扱設備</td>
<td>初期試験(30体)</td>
<td>出力分布検査試験</td>
<td>出力分布試験(121体)</td>
</tr>
<tr>
<td></td>
<td>出力分布検査試験</td>
<td>平成6年度点検</td>
<td>FHM装置起動試験</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>機械乾燥(50体)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EVST 移送</td>
</tr>
</tbody>
</table>

注: 本表詳細内容请参阅原始文件。
2. 燃料取扱貯蔵設備の概要

燃料取扱貯蔵設備は、炉心燃料集合体、ブランケット燃料集合体、制御棒集合体、中性子しゃべい体等の炉心構成要素（以下「燃料等」という）を発電所内に搬入してから、原子炉で使用した後の使用済燃料等を発電所外に搬出するまで、安全かつ確実に取扱及び貯蔵を行うものである。

高速増殖原型炉もんじゅは、高速炉特有の、

(1) 燃料にプルトニウム・ウラン混合酸化物を使用する。
(2) 冷却材にナトリウムを使用する。

等の特徴を有しており、燃料取扱貯蔵設備に要求される機能は、
- ナトリウム中及びアルゴンガス中での燃料等の取扱い
- ナトリウムと空気の接触を防止するバウンドリの保持
- 使用済燃料からの高い崩壊熱の除去
- ナトリウムを扱う設備はナトリウムの固化防止
- 使用済燃料等に付着したナトリウムの除去

等である。このようなことから燃料取扱貯蔵設備についても、高速実験炉「常陽」の開発、運転、保守経験を反映するとともに燃料交換設備、燃料出入設備、炉外燃料貯蔵槽等の主要な機器については、モックアップを製作し、機能試験、耐久試験等のR&Dを実施して、その結果を設計、製作、据付に反映し、更に各種の試験を実施して機能の確認を行っている。

「もんじゅ」の燃料取扱貯蔵設備は以下の設備から構成されている。

(1) しゃべいプラグ（回転プラグ）
(2) 燃料交換設備
(3) 燃料出入設備
(4) 炉外燃料貯蔵設備
(5) 燃料検査設備
(6) 燃料洗浄設備
(7) 燃料缶詰設備
(8) 水中燃料貯蔵設備
(9) 新燃料受入貯蔵設備
(10) 燃料搬出設備
(11) 燃取系計算機システム
(12) その他関連設備

第2-1 図に、燃料取扱及び貯蔵設備、第2-2 図に燃料等の搬出入、第2-1 表に系統構成と主要機能を示す。
搬入した新燃料等は新燃料送入貯蔵設備に一時貯蔵し、燃料交換に必要な本数をあらかじめ炉外燃料貯蔵槽に燃料出入口設備を使用して移送する。

燃料交換は、ほぼ半年ごとに原子炉を停止し、原子炉格納容器機器類入口を開設して、原子炉容器と炉外燃料貯蔵槽間で燃料交換装置、炉内中継装置及び燃料出入口設備を使用して新燃料等と使用済燃料等を1体ずつ交換して行う。燃料交換1回当たりの交換本数は、全炉心の約1/5を予定している。

「もんじゅ」の燃料取扱貯蔵設備は、使用済燃料の崩壊熱の除去を炉外に貯蔵して行う設計とし、炉外燃料貯蔵槽を原子炉格納容器の外に配置した。また、炉内と炉外の燃料等の取扱作業が独立して行えるようにしており、炉内での燃料等の交換、移送は、回転プラグ及び燃料交換設備により行い、炉外では燃料出入口設備で移送を行う。

原子炉容器から取り出した使用済燃料等は、炉外燃料貯蔵槽で冷却・貯蔵する。炉外燃料貯蔵槽で崩壊熱を除去した使用済燃料等は、燃料出入口設備で燃料洗浄設備へ移送し、付着したナトリウムを洗浄する。洗浄後の燃料棒及び燃料集合体は、燃料缶詰設備で缶詰缶に収納し、中性子しゃへい体はそのまま裸で燃料池内の貯蔵ラックに水中貯蔵する。

新燃料及び使用済燃料等を受け渡しする設備は、燃料出入口設備の移動、取合いが単純に行えるように燃料出入口設備の走行レールに沿って直線的に配置している。

このように燃料取扱貯蔵設備は、燃料等の取扱が目視確認できないことや多数の機器及び駆動系を持った設備から構成されること等により、その運転にあたっては燃料操作室からの遠隔操作で行うとともに運転員の負荷軽減及び運転員数の低減を目指し、全て自動運転することとしている。

第2-3 図に燃料等の取扱ルート、第2-4 図に基本運転スケジュール、第2-5 図に燃料取扱設備、第2-6 図に燃料取扱貯蔵設備の操作監視体系図、第2-7 図に燃料操作室の主制御盤、第2-8 図に原子炉構造図、第2-9 図に炉心断面及び炉心燃料集合体構造説明図、第2-10 図に炉心配置説明図、第2-11図に炉内燃料移送手順を示す。

次項以降に各設備の概要を述べる。
<table>
<thead>
<tr>
<th>燃料取扱及び貯蔵設備の系統構成（系統番号／系統名称／主要機能）</th>
<th>左記の系統を構成する主要な設備（系統番号／系統名称／主要機能）</th>
</tr>
</thead>
<tbody>
<tr>
<td>510 燃料交換設備
炉心構成要素の炉内移送</td>
<td>燃料交換装置
炉心と炉内中継装置間での移送
（回転プラグと運動）
炉内中継装置
燃料交換装置と燃料出入設備との間の中継移送</td>
</tr>
<tr>
<td>520 燃料出入設備
炉心構成要素の各受渡し設備間での移送</td>
<td>燃料出入機本体及び走行台車
各受渡し設備間での移送
燃料出入機冷却装置
移送中の使用済燃料の冷却
燃料移送ボット
炉心構成要素及び冷却材の収容と保持
共通電気計装設備
燃料取扱及び貯蔵設備の集中制御及び監視</td>
</tr>
<tr>
<td>530 炉外燃料貯蔵設備
ナトリウム中での新炉心構成要素の中継貯蔵及び使用済炉心構成要素の中継・減衰待貯蔵</td>
<td>炉外燃料貯蔵槽
炉心構成要素の貯蔵及び冷却材の保持
炉外燃料貯蔵槽冷却系
貯蔵中の炉心構成要素の冷却及び冷却材の温度維持</td>
</tr>
<tr>
<td>540 燃料検査設備
燃料の検査</td>
<td>燃料検査設備
被疑破損燃料のF P検査</td>
</tr>
<tr>
<td>550 燃料洗浄設備
使用済炉心構成要素の付着ナトリウムの洗浄</td>
<td>燃料洗浄装置
使用済炉心構成要素（中性子しゃへい体及びサーバイバランス集合体を除く）の洗浄
洗浄装置内面の雰囲気調整
洗浄装置
使用済炉心構成要素の収容及び雰囲気保持</td>
</tr>
<tr>
<td>560 燃料缶詰設備
水中貯蔵を要する使用済炉心構成要素の缶詰</td>
<td>燃料缶詰装置
使用済炉心構成要素（中性子しゃへい体及びサーバイバランス集合体を除く）の缶詰
缶詰周期調整装置
燃料缶詰装置内面の雰囲気調整
缶詰装
使用済炉心構成要素の収容及び雰囲気保持</td>
</tr>
<tr>
<td>570 水中燃料貯蔵設備
水中での使用済炉心構成要素の搬出待ちの貯蔵、保管及び取扱</td>
<td>水中台車
燃料出入設備と燃料移送機との間の中継移送
燃料移送機
水中台車、貯蔵ラック及び輸送容器間での移送
貯蔵ラック
使用済炉心構成要素の貯蔵
燃料池水冷却浄化装置
貯蔵中の炉心構成要素の冷却及び燃料池水の温度・水質維持</td>
</tr>
<tr>
<td>燃料取扱及び貯蔵設備の系統構成（系統番号／系統名称／主要機能）</td>
<td>左記の系統を構成する主要な設備（系統名称／主要機能）</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>580 新燃料受入貯蔵設備</td>
<td>燃料容器取扱装置</td>
</tr>
<tr>
<td>新炉心構成要素の受入れ、開梱受入検査、受入貯蔵及び移送</td>
<td>燃料搬出入エリアと新燃料取扱室間での輸送容器の移送及び起立</td>
</tr>
<tr>
<td></td>
<td>新燃料検査装置</td>
</tr>
<tr>
<td></td>
<td>新燃料のアルファ検査</td>
</tr>
<tr>
<td></td>
<td>新燃料移送機</td>
</tr>
<tr>
<td></td>
<td>燃料容器取扱装置内の輸送容器、新燃料貯蔵ラック及び地下台車間での新炉心構成要素の移送</td>
</tr>
<tr>
<td></td>
<td>新燃料貯蔵ラック</td>
</tr>
<tr>
<td></td>
<td>新炉心構成要素の貯蔵</td>
</tr>
<tr>
<td></td>
<td>地下台車</td>
</tr>
<tr>
<td></td>
<td>新燃料移送機と燃料出入設備との間の新炉心構成要素の中継移送</td>
</tr>
<tr>
<td></td>
<td>地下台車新燃料予熱装置</td>
</tr>
<tr>
<td></td>
<td>新炉心構成要素の予熱</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>燃料搬出設備</th>
<th>キャスク装荷装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>輸送容器の搬出のための取扱い</td>
<td>乾式搬出及び中性子源要素搬入のための輸送容器（PIB燃料搬送キャスク及び中性子源キャスク）の支持及び燃料入出設備と輸送容器との間の炉心構成要素通路の形成</td>
</tr>
<tr>
<td></td>
<td>キャスク洗浄装置</td>
</tr>
<tr>
<td></td>
<td>燃料池へ搬出るための輸送容器表面の洗浄</td>
</tr>
<tr>
<td></td>
<td>キャスククレーン</td>
</tr>
<tr>
<td></td>
<td>燃料池、キャスク洗浄装置、キャスク仮置場及びトレーラ間での輸送容器の移送</td>
</tr>
</tbody>
</table>
「もんじゅ」燃料等の搬出入

“Monju”
FLOW DIAGRAM OF FUEL SUB-ASSEMBLIES
「もんじゅ」燃料等の取扱いルート
"Monju" ROUTE OF FUEL SUB-ASSEMBLIES
<table>
<thead>
<tr>
<th>スケジュール (月数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>プラント運転</th>
<th>原子炉運転</th>
<th>燃料交換</th>
<th>原子炉運転</th>
<th>燃料交換</th>
<th>定</th>
<th>検</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料取扱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1原子炉→EVST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②新燃料貯蔵</td>
<td>ラック→EVST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>及び</td>
<td>EVST→燃料池の貯蔵ラック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③所外→新燃料</td>
<td>貯蔵ラック及び</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>貯蔵ラック及び</td>
<td>燃料池の貯蔵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラック→所外</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVST：炉外燃料貯蔵槽
燃焼系監視盤

- 自動化運転
 - 操作、監視
 - 半自動運転

燃焼系計算機システム

- 自動化運転管理
 - （自動制御盤へのKIC信号出力）

自動制御盤

- 自動化ダウン時のバックアップ運転
 - （連動、単独操作）
- 現場作業時の機器操作
 - SBP単位のシーケンス制御
 - 位置決め等の演算処理

補助盤

- 機器保護上、必要最小限のインターロック

- 各種情報信号
- 計測信号
- 制御信号（通常時）
- 制御信号（計算機ダウン時連動運転）
- 制御信号（計算機ダウン時単独運転）

第2-6図 燃料取扱及び貯蔵設備の操作監視体系図
第2-7図 燃取操作室の主制御監視盤
第2-8図 原子炉構造図
第2-9図 炉心断面及び炉心燃料集合体構造説明図
第2-10図 炉心配置説明図
燃料交換装置での燃料移送中に、炉内中継装置では燃料出入設備による使用済燃料と新燃料の入替も行われる。また、燃料出入設備との接続時および切離時には燃料出入用接続圧室のガス置換が行われる。
2. 1 しゃべいプラグ

しゃべいプラグは固定プラグと回転プラグからなる単回転プラグ方式で原子炉容器上部に設置され、炉心からの放射線を熱をしゃべいし、原子炉カバーガス等のバウンダリを形成するとともに、しゃべいプラグに搭載する炉内中間装置、燃料交換装置等を所定の位置に位置決め・支持する機能を有する。また、燃料交換時には燃料交換装置を搭載した回転プラグを回転することにより、燃料交換装置と相まって新炉心構成要素と使用済炉心構成要素を交換する機能を果たす。

しゃべいプラグは、しゃべいプラグ本体、しゃべいプラグ窯素ガス冷却系、しゃべいプラグアルゴンガス系、しゃべいプラグコンピュータル環系、しゃべいプラグ持上油圧系から構成されそれぞれの機能を分担している。第2.1−1図にしゃべいプラグ全体図を示す。

(1) しゃべいプラグ本体

原子炉容器上部フランジ及び中間ソールプレートの上に設置され、原子炉カバーガス等のバウンダリを形成し、炉心、冷却材及び原子炉カバーガス等からの放射線をしゃべい及び炉心からの放射・対流・伝導による伝熱をしゃべいする。しゃべいプラグ本体は、固定プラグと回転プラグからなり、固定プラグは原子炉蓋の静止部分を、回転プラグは回転部分を形成し燃料交換時には回転プラグを回転する。

回転プラグと固定プラグの間隙部については、フリーズシール（原子炉カバーガス等のバウンダリ）とエラストマシール（バックアップシール）の二重方式とし、想定される運転状態、事故、故障等を考慮してもフリーズ合金が溶融してフリーズシール補正あふれ出ないよう、出力運動時においてフリーズ合金は凝固状態とし、エラストマシールを働かせ、フリーズ遮断は原子炉カバーガス圧より少し高く設定し、また、燃料交換時はフリーズ合金を溶融状態としエラストマシールを働かせて、カバーガスの漏れを抑制する。第2.1−2図にしゃべいプラグ構造図を示す。

しゃべいプラグは、それぞれ上板、しゃべい層、しゃべい錠、熱しゃべい層、ディッププレート等から構成されている。

① 固定プラグ上板

固定プラグ上板は固定プラグの主要強度部材で、上下2枚フランジを有する炭素鋼板溶接一体型構造としている。主としてこの上板によって固定プラグの原子炉カバーガス等のバウンダリを形成し、上板のフランジ上面には、フリーズシール補正、エラストマシール機構、回転プラグ軸受、上部支持リング等が据付けられている。

② 回転プラグ上板

回転プラグ上板は回転プラグの主要強度部材で、たわみを小さく抑えるため約700mm厚の鍛鋼構造としている。回転プラグには、燃料交換装置のホールドダウンアームの据付のため及びホールドダウンアームの補修が必要になった際には引き抜けるよう長円形
プラグを設けており燃焼時にここに燃料交換装置を搭載する。また、炉心上部機構用孔に炉心上部機構を搭載する。

③ 窒素ガス冷却層
固定プラグ、回転プラグ及び炉心上部機構には窒素ガス冷却層が設けられ、原子炉運転時は窒素ガス冷却系により強制冷却を行い、しゃべいプラグ上面温度を70℃以下に抑える。燃料交換時は強制冷却を行わずに自然放熱によりしゃべいプラグ上面温度を70℃以下に維持する。

④ しゃべい層
しゃべいプラグ上面での線量率を50mrem/h（0区分）以下に抑えるため上板、炭素鋼及びストレンス鋼からなるしゃべい体を設ける。

⑤ 熱しゃべい層
熱しゃべい層は、しゃべいプラグの上面温度を原子炉運転時・燃料交換時共に70℃以下に抑えるためにストレンス鋼製の薄板を多数積層した構造とし、熱伝達及び輻射による伝熱量を少なく抑える。

⑥ カバーガスシール機構
しゃべいプラグのカバーガスシールは回転部シールと固定部シールに分けられ、回転部シールはフリーゼシールとエラストマシールからなり、原子炉カバーガス等のバウンスはフリーゼシールで形成する。固定部シールは、原則として二重ゴムOリング、新鮮アルゴンガスによるバックアップ方式としている。
フリーゼシールは固定プラグ側に設けたフリーゼシール槽と回転プラグ側に設けたフリーゼシール仕切板の間にBi(Bu)-Sn(35)-In(5%)からなる低融点合金（融点125℃）を注入しシールしている。合金は原子炉運転時凝固し、燃焼時に溶融して使用するためフリーゼシール仕切板内に合金溶融用ヒータを設けている。
エラストマシールはフリーゼシールの背圧と合金の耐酸化を考え、フリーゼシールの炉外側をアルゴンガス雰囲気とするため回転プラグの胴と接触するように取付けており、上下二段あり、その間にシリコンオイル循環系にて潤滑用のシリコンオイルを注入する。また、エラストマシールの内部にアルゴンガスをかけシール面を密着させることとしているが、回転プラグを回転する際は内圧を下げて回転時の捜動抵抗を低くする。
第2.1-3 図にフリーゼシール及びエラストマシール部構造図を示す。

⑦ 回転プラグ駆動機構
固定プラグに対して回転プラグ中心を1080mm偏心させ、回転プラグの基準位置を0°として±175°まで回転することにより、燃料交換装置の回転と相まって燃料交換装置グリッパが炉内の燃料等の取扱いエリアをカバーすることとしている。
(2) しゃべいプラグ窒素ガス冷却系

しゃべいプラグは上板の熱変位を制限すること及び搭載する電気計装品等を許容温度以下に保持するため、上板の下方の窒素ガス冷却層と熱しゃべい層の組合せにより上板を冷却している。本系系は、出力運転中はしゃべいプラグ本体の固定プラグ、回転プラグ、長円形プラグと炉心上部機構の上板を冷却するため、それぞれの窒素ガス冷却層に冷却用窒素ガスを供給する。

(3) しゃべいプラグアルゴンガス系

本系系は、固定プラグと回転プラグに搭載する機器としゃべいプラグ本体のシール部に背圧ガスを供給する。

(4) しゃべいプラグシリコンオイル循環系

本系系は、上下二段に取り付けたエラストマシールの間にシリコンオイルを供給し、エラストマシールから漏洩したシリコンオイルを回収する。また、エラストマシール内部へのアルゴンガス加圧及びフリーズシール機構へのアルゴンガス背圧を行う。

第2.1-4 図にしゃべいプラグシリコンオイル循環系配管系図を示す。

(5) しゃべいプラグ持上油圧系

燃料交換時回転プラグの回転プラグの動作に先立ち回転プラグを持ち上げ、回転プラグの荷重を回転軸受を介して固定プラグ上板へ伝達する。また、回転プラグの回転動作を終了する場合に、回転プラグの荷重を直接固定プラグ上板へ伝達するようジャッキアップされた回転プラグを持ち下げる為の系系で、油圧ユニット、油圧マニホールド、昇降シリンダ、ロックイン装置等から構成されている。

油圧ユニットから吐出された作動油は、固定プラグ上において回転プラグ回りに配置した油圧マニホールド（4群）に送られる。油圧マニホールド内にある昇降制御切換弁は、4群に分割された12基（3基/1群）の昇降シリンダで各群に作動油を供給し、回転プラグを持上げ／持下げする。回転プラグの持上げ／持下げする際、昇降制御切換弁を開閉制御して各群シリンダ位置偏差が1.1mm以下になるように、回転プラグの昇降連動を調整する。

第2.1-5 図にしゃべいプラグ持上油圧系回路図、第2.1-6 図に回転プラグ持上／持下作動図を示す。
第2.1-1 図 しゃへいプラグ全体図
第2.1-2 図 しゃへいプラグ構造図 (3/3)
第2.1-3 図 フリーズシール及びエラストマシール部構造図
第2.1-6 図 回転プラグ持上／持下作動図 (1/2)

1. 回転プラグ持上げ準備
2. 「上ロックリングプレート引抜」
3. 「低圧上昇」
4. 「高圧上昇」
5. 「下ロックリングプレート挿入」
6. 「低圧下降」

LS：リミットスイッチ
PB：プッシュボタン

① 回転プラグ持上げ手順図
第2.1-6 図 回転プラグ持上／持下作動図（2/2）
2. 2 燃料交換設備

燃料交換設備は、原子炉内で燃料等の移送を行うもので燃料交換装置、炉内中継装置、炉内検査孔設備、燃料交換設備アルゴンガス系及び燃料交換機器置場により構成されている。燃料交換装置及び炉内中継装置ともに原子炉通常運転中は炉上部から取り外しメンテナンス、廃棄物処理工場内の燃料機器置場の収納容器内に保管されており、燃料時にしゃべりプラグに搭載して使用する。

炉外での燃料等の移送・受渡しをする燃料出入設備とは、炉内中継装置上部に設置する燃料出入用接続筒上面に、燃料出入機が気密接続することにより取り合う。

燃料交換設備は炉内のナトリウム中で燃料等を上下動させることから長尺構造をしており、ナトリウム及びアルゴンガス中の部材は、ステンレス鋼製としている。

燃料交換に係る燃料交換設備機器の搬入、据付、取外し、搬出は、原子炉機器輸送ケーシング、プラグ取扱機等を使用して行われる。

第2.2-1図に燃料交換装置及び炉内中継装置の運用、第2.2-2図に燃料交換システムを示す。

（1）燃料交換装置

燃料交換装置は燃料交換時に回転プラグ上に据付け、回転プラグの回転動作と連動させて、炉心と炉内中継装置との間で燃料等の移送を行うもので、燃料交換装置本体、昇降駆動装置、燃料交換孔ドアバルブ、ホールドダウンアーム等から構成され、全長は約22mある。第2.2-3図に燃料交換装置を示す。

① 燃料交換装置本体

燃料交換装置本体は、直接炉心構成要素の取扱いを行うもので炉心構成要素をつかむためのグリッパ、据付・取外し時にグリッパを本体内に収納するためのバントグラフ機構及びそれらを駆動するためのグリッパ及びグリッパ駆動装置からなる。

燃料交換装置本体は、バントグラフ方式で燃料交換中にドアバルブよりホールドダウンアーム内に挿入しバントグラフを聞いてセットし、回転プラグとホールドダウンアームの回転により炉心上部の所定の位置に移動する。

燃料交換装置本体は、昇降駆動装置により上下動し、本体に組み込まれたグリッパ及びグリッパ駆動装置で燃料等のつかみ・離し、引抜・挿入を行う。

第2.2-4図に燃料交換装置本体駆動原理、第2.2-5図に燃料把持動作状態説明図、第2.2-6図にグリッパ構造図、第2.2-7図にグリッパ爪閉閉動作説明を示す。

② ホールドダウン機構

ホールドダウン機構は、燃料交換装置本体の炉内でのガイドと旋回機能及び炉心構成要素引抜時に周囲燃料の浮上を防止するホールドダウン機能有するもので、炉内に設置される馬蹄型断面の軸を持つホールドダウンアーム、その回転及び昇降を行うホールドダウン駆動装置から成り、回転プラグ上に搭載される。
ホールドダウンアームは、本体を収納し、回転プラグ上のホールドダウン駆動装置により回転するとともに燃料等の挿抜時にアームを少し下降させることによりアーム先端のグリッパ斜内管で周囲の燃料等の浮き上がりを防止する。ホールドダウンアームは、原子炉運転中に原子炉内部に設置したままとなることから耐震剛性と熱応力緩和を図った馬蹄形断面の構造とし、外表面には耐熱シャフトを設置している。また、ナトリウムベーパの上昇防止対策等を行っている。第2.2-8図に原子炉容器内筒との干渉事故防止を示す。

③ 燃料交換孔アプルプ
燃料交換孔アプルプは、ホールドダウン駆動装置上部に取り付けられ、ホールドダウン駆動装置用とともに出力運転時に原子炉カバーガス等バウンダリを形成する。

④ 昇降駆動装置
燃料交換時に燃料交換装置本体の昇降を行う。

(2) 炉内中継装置
炉内中継装置は燃料交換時に固定プラグ上に設置し、燃料移送ボットの通路を形成するとともに、燃料等を燃料移送ボットに収納した状態で燃料交換装置と燃料出入設備との間で中継移送するもので、炉内中継装置本体、回転ラック駆動装置、燃料出入孔アプルプ、燃料出入孔スリーブ、挿入しゃべい体等から構成され、全長は約17mある。
第2.2-9図に炉内中継装置を示す。

① 炉内中継装置本体
炉内中継装置本体は、燃料移送ボットをつかんだ燃料出入設備のグリッパをガイドし、下部の回転ラックに燃料等の入った2体のポットを収納する。燃料交換装置から使用済燃料等を、燃料出入設備から新燃料等が入ったポットを受取り、しゃべいプラグ上の駆動装置でラックを回転し、燃料出入設備へ使用済燃料等が入ったポットを、燃料交換装置に新燃料等をそれぞれ渡す。

② 回転ラック駆動装置
炉内中継装置本体の回転ラックを燃料交換装置等と取合う所定の位置に回転させるための駆動装置である。第2.2-10図に回転ラック駆動装置説明図を示す。

③ 燃料出入孔アプルプ
上部案内筒の上部に取り付けられ、出力運転時に上部案内筒と相まって原子炉カバーガスバウンダリを形成する。

④ 燃料出入孔スリーブ
燃料出入孔に炉内中継装置本体挿入時の案内ガイドをなすとともに、燃料出入設備が原子炉容器内筒から使用済燃料入ポットを吊り上げる途中で移送ポットが停止した場合に
使用済燃料を冷却し、また、燃料出入孔プラグを引き抜く際、加熱するために内部にガス流路を設けている。第2.2-11図に燃料出入孔プラグまわり拡大図を示す。

（3）炉内検査孔

炉内検査孔設備は、回転プラグ上に設置される長円形プラグ上に設置され、炉内検査孔スリープ内に炉内検査孔プラグを保持している。炉内検査孔プラグは、燃料交換装置による燃料交換装置による燃料切離し不能時に、ドアバルブ及び燃料切離装置を設置して燃料切離しを行う場合や炉内観察の必要が生じた場合に取り外す。

（4）燃料交換設備アルゴンガス系

燃料交換設備アルゴンガス系は、燃料交換装置、炉内中継装置、炉内検査孔設備及びC／V内運転床上の燃料交換置場に新鮮アルゴンガスを供給し、シール部加圧、機器・配管・原子炉機器輸送ケーシング等との接続箇内のガス置換、プローダウン等を行う。

（5）燃料交換機器置場

プラグ置場、C／V内機器置場及びM／B内機器置場から構成される。

プラグ置場は、C／V内運転床に設置され、プラグ取扱機を用いてしゃべいプラグから取外される孔プラグ類を個々にアルゴンガス中に保管する。

C／V内機器置場は、燃交時あるいは定検時に取外してC／V内運転床に上に保管される燃料交換設備機器を直立支持する。

M／B内機器置場は、原子炉機器輸送ケーシングを用いて燃交時以外に取外してM／B内に保管する燃料交換設備機器をアルゴンガス中に収納保管するものである。
*1 燃料交換装置での燃料移送中に、炉内中継装置では燃料
出入設備による使用済燃料と新燃料の入替も行われる。

*2 回転プラグの回転動作と連動し、移送が行われる。

第2.2-1 図 燃料交換装置及び炉内中継装置の運用
第2.2-2 図 燃料交換システム
第2.2-3 図 「もんじゅ」燃料交換装置

"Monju" FUEL HANDLING MACHINE
第2.2-4 図 燃料交換装置本体駆動原理
燃料把持動作状態説明図

第2.2-5 図
第2.2-6 図 グリッパ構造図
第2.2.7 図 グリップ爪開閉動作説明
第2.2-8 図 原子炉容器内筒との干涉事故防止
第2.2-9 図 炉内中継装置
第2.2-10図 炉内中継装置 回転ラック駆動装置 説明図
第2.2-11図
燃料出入孔プラグまわり拡大図
2.3 燃料出入設備

燃料出入設備は燃料交換時における炉内と炉外燃料貯蔵槽間の燃料等の移送を行い、また、原子炉通常運転中においては、地下台車から新燃料等を受け取り炉外燃料貯蔵槽へ移送及び炉外燃料貯蔵槽からの使用済燃料等の取り出し、燃料洗浄設備、燃料単話設備、水中燃料貯蔵設備等への移送、受渡しを行う。

燃料出入設備は、燃料出入機本体、移送中の使用済燃料等を冷却する冷却装置及びこれらを搭載して走行する走行台車、燃料出入機予熱冷却装置及び燃料移送ボットから構成され、全高約8m、重量約370tである。第2.3-1図に燃料出入設備の運用、第2.3-2図に燃料出入設備を示す。

（1）燃料出入機本体

燃料出入機本体は、本体A、本体B及び燃料出入機グリッパ交換装置から構成され、取扱い対象物は、炉心構成要素、燃料移送ボット、単話枠、P18燃料輸送キャスクプラグ、中性子源キャスクプラグ及びドリップバンである。

第2.3-3図に燃料出入機本体、第2.3-4図に燃料出入機グリッパを示す。

① 燃料出入機本体A

本体Aは、ナトリウムまたはアルゴンガス雰囲気中の炉心構成要素を含み、または燃料移送ボット内に収納状態で取り扱うもので、燃料等のつかみ、保持、切り出しを行うグリッパ、グリッパ駆動装置、燃料等収納時または受渡し時の気密保持としゃべいを行うコフィン、移動ブロック、ドアバルブ及び燃料等からの滴下ナトリウムを受けるドリップバンで構成される。第2.3-5図に燃料出入機本体A全体形状図を示す。

本体Aグリッパは、グリッパ駆動装置から吊下げられた2対（4本）のステンレス鋼製テープによってコフィン内と受渡し装置との間を昇降し、ナトリウム中及びアルゴンガス中の燃料等のつかみ・はしを行う。グリッパはアダプタを取り付けて燃料等を取り扱う構造としており、グリッパには取扱い対象物によってアダプタを燃料用、ボット用、ドリップバン用にグリッパ交換装置で取り付ける。第2.3-6図燃料出入機本体Aグリッパ形状図を示す。

グリッパ駆動装置は、グリッパからのテープを巻き取る4個の巻取ドラム、巻上駆動モータ、爪開閉モータ、電磁クラッチ、ブレーキ等から構成され、各巻取ドラムに巻付けられている左右のテープをそれぞれ同方向に送ることによりグリッパが昇降し、逆方向に送ることによりグリッパの爪を開閉する。第2.3-7図にグリッパ駆動装置駆動原理図、第2.3-8図に燃料出入機本体Aグリッパ駆動原理図を示す。

本体Aコフィンは、取扱い対象物の移送の際にそれを収容する放射線遮蔽付の気密容器で、二重円筒構造をしており、内側円筒の内面には使用済燃料の冷却上必要な照射熱を確保するためのクロックポイント処理したスリープ、外側円筒は炭素鋼とポリエチレンによりしゃべいする構造になっている。また、取扱い対象物のナトリウム凍結防止を
図るためのヒータを内側円筒の外面に、また、コフィン内に収納した使用済燃料を冷却するための流路が二重円筒間（間接冷却系）に設けられている。

可動ブロックは、床設備に取扱対象物を受渡す際に、シェーキ及び気密を確保した上で床アダプルブに本体Aドアバルブを昇降させる機器である。

本体Aドアバルブは、可動ブロックの下面に設置され、燃料等の通路を形成する機器で、通路を開閉する弁体と弁体を収納するケーシング及び駆動装置からなる。また、弁体にはドリップパン受けがあり、燃料等から滴下するナトリウムを受けるドリップパンを装備し、予熱保持するためのヒータが設置されている。なお、ドリップパンは滴下したナトリウムを取り除くためのサイフォン機能を備えた構造である。

第2.3-9 図に燃料出入機本体Aドリップパンを示す。
②燃料出入機本体B

本体Bは、空気または水中の炉心構成要素を裸、または缶詰缶内収納状態で取り扱うもので、基本的には燃料出入機本体Aと同様な機器で構成するが、取扱対象物のハンドリングヘッドの形状が1つであることからアダプタ交換が必要ならないこと、コフィン及びドアバルブ弁体にナトリウム凍結防止のヒータが必要なことが相違点である。

③燃料出入機グリップ交換装置

燃料出入機本体Aグリップのアダプタを取扱対象物に合わせて交換する場合にアダプタの保持、保管を行う装置である。

（2）燃料出入機冷却装置
燃料出入機本体内に収納された使用済燃料等を冷却する設備で、本体A間接冷却系、本体A直接冷却系、本体B直接冷却系から構成される。第2.3-10図に燃料出入機冷却装置系図を示す。
①本体A間接冷却系

本体A間接冷却系は、炉心から炉外燃料貯蔵槽に使用済燃料等を移送する際に、燃料移送ボットに収納した使用済燃料の崩壊熱（最大17kw）を間接的に空冷冷却するもので、冷却空気は、冷却ブロワーによって本体Aコフィンの上部に供給され、コフィン内外筒間（二重構造部）を経由してコフィン下部から出入通路等の室内浄風に排気される。

②本体A直接冷却系

本体A直接冷却系は、炉外燃料貯蔵槽で保管・一時貯蔵した使用済燃料を洗浄処理等する場合に、本体Aに収納された裸の使用済燃料の崩壊熱（最大2.2kw）を除去するもので、燃料等を直接アルゴンガス冷却するせめて、冷却ガスは、ナトリウムが固着しないよう加熱器で温度制御しながら本体A上部から供給され、コフィン下部からミストトラップ、空気冷却器を経由して冷却系ブロワーに戻る循環冷却方式としている。
（3）本体B直接冷却系

本体B直接冷却系は、洗浄後の使用済燃料を本体Bに収納して移送する場合に、使用済燃料（裸または仮設仮収納）の崩壊熱（最大2.2kw）を除去するもので、直接空気を循環して行う。

（3）走行台車

走行台車は、燃料出入機本体A、B及び燃料出入機冷却装置を搭載し、所定の受渡し設備間を走行し位置決めするものである。

駆動装置は、高速走行（5m/min）と位置決めのための低速走行（0.1m/min）（イリュ制御により可変速可能）の常用走行モータと常用走行モータ故障時に使用する予備走行モータが、台車の左右に各一式設置されている。

（4）燃料出入機予熱冷却装置

本設備は、しゃべいプラグ窒素ガス冷却系に接続されており、本体Aで炉内中継装置から使用済燃料等を収納した燃料移送ボットを吊上げる途中で停止した場合及び燃料出入孔スリープからプラグを引き抜く際に付着ナトリウムを加熱することが必要な場合に使用する。

（5）燃料移送ボット

燃料移送ボットは燃料交換時に使用するもので、燃料出入機本体Aによって炉内中継装置及び炉外燃料貯蔵槽並びに燃料検査槽間で取り扱われ、炉心構成要素をナトリウムに浸した状態で移送する。

ハンドリングヘッド下部は炉内中継装置の回転ラックで支持できるように段付円筒構造となっている。また、この部分には本体Aで移送中に使用済燃料等の発熱でボット内のナトリウム液位が上昇してもボットから溢れ出ないように予めボット内の液位を下げるためのサイフォンを設けている。

第2.3-11図に燃料移送ボットを示す。
第2-3-3 図
「もんじゅ」燃料出入機本体
"Monju" EX-VESSEL TRANSFER MACHINE
燃料出入機グリッパ
Gripper of Ex-Vessel Transfer Machine
第2.3-5 図 燃料出入機本体 A 全体形状図
第2.3-6 図
燃料出入機本体 A グリッパ形状図
第2.3-7 図（1/2） グリッパ駆動装置駆動原理図（グリッパ昇降状態）
第2.3-7図（2/2） グリップ駆動装置 駆動原理図（爪開閉状態（アダプタ側））
第2.3.9 図
燃料出入機本体A ドリップパン
第2.3-10図 燃料投入機冷却装置系図
第2.3-11図
「もんじゅ」燃料移送ポット
"Monju" FUEL TRANSFER POT
2.4 炉外燃料貯藏設備

炉外燃料貯藏設備は、炉心を装荷する新燃料等及び炉心から取り出した使用済燃料等をナトリウムの中で中継・冷却貯蔵するもので、炉外燃料貯蔵槽、炉外燃料貯蔵槽冷却系設備、炉外燃料貯蔵槽内のナトリウム液位・純度を維持する1次補助ナトリウム系及び槽内のナトリウム表面を覆い空気との接触を防止する1次アルゴンガス系設備等から構成される。第2.4-1図に炉外燃料貯蔵設備系統図を示す。

（1）炉外燃料貯蔵槽

炉外燃料貯蔵槽は、新炉心構成要素及び使用済炉心構成要素を1時貯蔵する設備であり、燃料貯蔵容器、回転ラック、しゃべいプラグ、案内装置、容器、床ドアバルブ等から構成される。第2.4-2図に炉外燃料貯蔵槽を示す。

① 燃料貯蔵容器

燃料貯蔵容器は上部をフランジで接続し、収納円筒型のステンレス鋼製容器で、胴内径約6m、高さ約9m、最高使用温度300℃、圧力1.5kg/㎠である。

内部にナトリウム及び炉心構成要素を収納する回転ラック及びナトリウム冷却配管設置されており、上部に設けられたしゃべいプラグと共にバウンダリを構成する。

② 回転ラック

回転ラックは燃料等約250体の貯蔵容量を有しており、6列同心円上の貯蔵ポジションに燃料移送ボットが収納されている。下部にナトリウム軸受を有し、しゃべいプラグ上の駆動装置により回転して、案内装置の6本の案内管と各列の貯蔵ラックが位置決めされる。第2.4-3図にEVSSTNa中軸受を示す。

各列の貯蔵容量は以下のとおりである。

A列 : 27
B列 : 33
C列 : 39
D列 : 45
E列 : 51
F列 : 57（1ポジション：フックル専用）

計 : 252

各列に1ポジションずつ空燃料移送ボットを設けることとしており、燃料移送ボット入り炉心構成要素の貯蔵容量は、245体（245ポジション）である。また、A〜E列の燃料移送ボットについては熱的幅射効率を高めるためにクロトカバーを避けられず、高崩壊熱を持つ使用済燃料の移送・貯蔵に使用する。
回転ラック駆動装置は、モータ、減速機、位置検出器、軸シール部等で構成されている。回転ラックの回転は、回転速度0.1rpmで0°〜360°の間で正逆両方向に回転し、回転ラックの位置決め制御は、停止位置の直前に0.01rpmまで減速後停止位置でブレーキにより停止させる。第2.4-4 図に回転ラック駆動装置駆動原理図を示す。
軸シール部は、駆動軸の摂動部からの漏れを防止するためのもので、Xリングが3段に取り付けられており、Xリング間は清浄なアルゴンガスで加圧されている。
第2.4-5 図にEVSIVT軸シール部構造を示す。
（3）しゃべいプラグ
しゃべいプラグは炉外燃料貯蔵槽のカバーガスバウンダリを保持するとともに回転ラック及び燃料等の荷重を支持し、貯蔵する使用済燃料等からの上方への放射線をしゃべいする。
（4）案内装置
案内装置は6本の案内管からなり、床ドアバルブを介して燃料出入設備と接続して、回転ラックとの間をガイドするもので、直線配置としている。
第2.4-6 図に回転ラック-案内装置案内管位置関係図を示す。
（5）ドアバルブ（6式）
ドアバルブは燃料出入機本体Aと接続して、炉外燃料貯蔵槽に新燃料及び使用済燃料等の受渡しをする際の燃料移送ボンプ及び炉心構成要素の通路を開閉するもので、しゃべい及びバウンダリを保持する機能を有し、6個のドアバルブが一体となっており、ドアバルブ上に可動アダプタフランジを所定の列に移動、設定することにより炉外燃料貯蔵槽の所定の列の炉心構成要素を取扱うこととしている。
第2.4-7 図にEVSIVT 6式ドアバルブを示す。
（2）炉外燃料貯蔵槽冷却系
炉外燃料貯蔵槽冷却系は、独立した3ループから構成される。燃料貯蔵容器に設置したコイル状の冷却管により、容器内のナトリウムと熱交換して空気冷却器から大気に放熱することとし、2ループで使用済燃料等からの崩壊熱（最大660kw）を十分に除去できる設計としている。容器内の冷却管は、万一を考慮して4ループ分取付られており、1ループについては、容器が設置されている部屋を出た部分で配管に盖キャップされている。容器内のナトリウムは自然循環式としている。
第2.4-8 図に炉外燃料貯蔵設備の冷却系の概要を示す。
（3）１次補助ナトリウム系

１次補助ナトリウム系は、炉外燃料貯蔵槽のナトリウム液面及び純度を維持するため
常時、一定流量を電磁ポンプで汲み上げており、コールドトラップにより常にナトリウ
ム中の酸素濃度を10ppm以下に維持している。

（4）１次アルゴンガス系

１次アルゴンガス系は、炉外燃料貯蔵槽のカバーガス圧を常に正圧に保持し、空気（
酸素）が系内に浸入してナトリウムと反応を生じないようにしている。

（5）２次補助ナトリウム系、２次アルゴンガス系

２次補助ナトリウム系は、冷却系のナトリウムの純度を維持するためのもので、通常
は、ナトリウムのインベントリが少なく、かつ酸素の系内への持ち込み経路が限定され
ていることから系統運転を停止している。

２次アルゴンガス系は、冷却系の温度変化によるガバーガスの圧力調整を行う。
1. 燃料貯蔵設備は
3 系より構成される。
第2.4-2 図 「もんじゅ」 炉外燃料貯蔵槽
"Monju" EX-VESSLE FUEL STORAGE TANK
第2.4-3 図 EVST Na中軸受
第2.4-4 図 回転ラック駆動装置駆動原理図
第2.4-5図 EVST 軸シール部構造
炉外燃料貯蔵槽の運用

案内装置案内筒が回転ラックの各列毎に1台、合計6台が燃料出入設備走行方向に直線上に配置されており、回転ラックの各ポジションへのアクセスは、案内装置案内筒の上部に設置する床ドアパルプの位置及び回転ラックの回転角の組合わせにより全ポジションについて行うことができる。

第2.4-6 図
回転ラックー案内装置案内筒位置関係図
第2.4-7 図 EVST6連式ドアバルブ
EX-VESSLE FUEL STORAGE TANK 6-CONNECT TYPE DOOR-VALVE
2. 5 燃料検査設備

燃料検査設備は、原子炉運転中に炉内でタギング法またはDN法燃料破損検出装置により破損が検出された場合、原子炉を停止後、破損の疑いのある燃料は、燃料交換設備、燃料出入カ本体Aを使用して、直接または一旦炉外燃料貯蔵槽を経由して、燃料検査槽に受け入れ、検査槽内を真空引きしてPPガスを破損部から強制的に槽内に排出し、そのガスをγ線検出器によってアルゴンガス中の中核分裂生成ガスの検出を行う設備である。

本設備は、燃料移送ボルト入り使用済燃料集合体を内部に収納保持する検査槽、検査槽内の使用済燃料集合体の崩壊熱を除去する冷却系、検査槽内のアルゴンガスを放射線検出系へ移送するとともに系内へアルゴンガスを給気するアルゴンガス系、ガス中に含まれる核分裂生成ガスのγ線を測定する放射線検出系等より構成される。

第2.5-1 図に燃料検査設備系統図を示す。

(1) 検査槽

たて置く筒容器で槽本体、床ドアバルブ等から構成され、燃料検査を行わない時は、燃料交換及び燃料洗浄処理運転に伴って交換する燃料出入カ本体Aの使用済ドリップパ
ン放置として使用し、ドリップパノン9体、ドリップパニングアダプタ1体を収納できる。

更に、検査槽内の滴下ナトリウムは検査槽下部のナトリウムドリップパノンに貯留される。

(2) 冷却系

冷却系は検査槽内の使用済燃料集合体の崩壊熱を除去する機能を有し、検査槽冷却ブ
ロワ、配管等から構成される。

冷却配管は1系統、冷却ブロワは2台設けてあり、通常時は1台運転である。

冷却ブロワが2台共に機能喪失した場合に、自然冷却出口弁を開にすることにより、冷却流路を構成し、燃料の過熱を防止するための自然冷却系を有している。

(3) 放射線検出系

放射線検出系は検査槽から移送されたアルゴンガスを一時貯留し、これをサンプリングしてアルゴンガス中に含まれる核分裂生成ガスのγ線を測定するもので、核分裂生成ガス貯留タンク、核分裂生成ガス循環ブロワ、γ線ガスサンプラ及び配管等から構成される。γ線ガスサンプラに導かれたアルゴンガスは、ここでNα1シンチレータにより希ガス(133Xe)の有無を検出する。
2. 6 燃料洗浄設備

燃料洗浄設備は、炉外燃料貯蔵設備で冷却・貯蔵された後、燃料池で水中貯蔵するために取り出された使用済燃料等に付着したナトリウムを洗浄するもので、洗浄槽、アルゴンガス循環系、脱塩水循環系等より構成される。

第2.6-1 図に燃料洗浄設備系経路を示す。ナトリウムの洗浄は、湿潤アルゴンガス洗浄と脱塩水循環洗浄により行う。

（1）燃料洗浄槽

燃料洗浄槽は、燃料出入口設備との間で燃料等の受渡しを行う、燃料等を保持し、冷却、洗浄を行うもので上部にドアバルブを有している。洗浄槽には、非常時の冷却確保の観点から、保温材を取り付けておらず、燃料洗浄槽からの自然冷却により、燃料の冷却ができるようになっている。更に燃料洗浄槽床貫通部にて、燃料の移送停止が生じた場合には、燃料検査設備の間接冷却系により空気を供給し、間接冷却できるようになっている。第2.6-2 図に移送停止時の燃料間接冷却を示す。

（2）アルゴンガス循環系

アルゴンガス循環系は、洗浄槽内の燃料等の冷却、湿潤ガス洗浄及び脱塩水洗浄後の洗浄槽内の脱湿を行う。冷却の目的は、使用済燃料の崩壊熱の除去の他、湿潤ガス洗浄時のアルカリによる燃料被覆管の応力腐食割れを防止するために制限温度150℃以下まで冷却することにある。

湿潤アルゴンガス洗浄は、洗浄槽内をアルゴンガス雰囲気にして、使用済燃料等を入入れ、アルゴンガスを循環しながら蒸気を系内に注入し、付着ナトリウムと蒸気との反応を徐々に起こして行う。湿潤ガス洗浄の進行状況はアルゴンガス循環系に設けられた水素濃度で監視できる。

脱塩水後の脱湿は、アルゴンガス加熱器により、加熱されたアルゴンガスを洗浄槽内へ供給し、槽内の水分を除去することで行う。除去した水分は、アルゴンガス冷却器により凝縮され、廃液系ドレーンされる。

（3）脱塩水循環系

脱塩水循環洗浄は湿潤アルゴンガス洗浄後に行うもので、槽内に脱塩水を満たして水を循環し、仕上げ洗浄を行う。洗浄廃液には、多量の放射性腐食生成物が含まれると予想されることから、洗浄槽出口に洗浄槽出口フィルタを設け、廃液中の放射性腐食生成物を除去できるようにしている。
第2.6-1図 燃料洗浄設備系統図
第2.6-2 図 移送停止時の燃料間接冷却
2. 7 燃料缶詰設備

燃料缶詰設備は、ナトリウム洗浄後の使用済燃料等のうち燃料集合体及び制御棒集合体をステンレス製の缶詰缶に収納するもので、缶詰容器、缶蓋取扱装置、缶回転装置、自動ボルト締め装置、気密試験装置、給・排水装置、駆動装置及び缶詰缶等から構成され、各装置が複雑に動作する遠隔ロボットである。

第2.7-1 図に燃料缶詰装置構造説明図を示す。

（1）缶詰容器

缶詰容器は、缶詰作業を行うために缶詰缶を収納する絞型円筒容器で上部にドアバルブ及びドアバルブと缶詰容器との間の通路を形成する案内筒が設置される。通常、缶詰容器内の収納筒には、冷却のための水を張って使用している。

（2）缶蓋取扱装置

缶蓋取扱装置は、缶蓋の取り付け、取り外しを行う装置で門型アームの先端に取り付けられているグリッパで取り扱う。

（3）缶回転装置

缶回転装置は、缶盖の取り付け、取り外し、基準位置検出及びボルト締め時等に缶詰缶を回転させる装置で、缶固定機構を備えており缶詰缶を収納筒内に収納後、回転円板上に取り付けた固定アームを使用して固定する。

第2.7-2 図に缶詰缶回転固定機構原理図を示す。

（4）自動ボルト締め装置

自動ボルト締め装置は、ナットランナを圧縮空気により回転させてボルトを緩め及び締め付けるものである。

（5）気密試験装置

炉心構成要素の缶詰作業終了後、缶詰シール部（リング）のシール性能を確認する装置で、内側と外側（リング）のシールリングの間に加圧し、圧力降下法により行う。

（6）缶詰給排水装置

缶詰缶内に給水及び炉心構成要素を装荷後、水位を調整するための装置で、門型アームの先端にノズルが取り付けられおり、このノズルで給水及び吸引排水する。
（7）駆動装置

缶詰作業を行う3本のアームを駆動させるための装置で、通常は電動にて駆動されるが、手動ハンドルによる駆動も可能な構造になっている。

（8）缶詰缶A，B

炉心構成要素を1体収納する容器で、缶詰缶Aは底板がフラットで、缶詰缶Bは底板が窪んだ形状をしている。缶詰缶Aには炉心燃料及びプランケット燃料を入れ、缶詰缶Bには制御棒を入れる。A，Bは底板形状の違いにより、燃料池内貯蔵ラック収納時の誤装荷防止を検知することとしている。

第2.7-3図に缶詰缶を示す。
第2.7-1 図 燃料缶詰装置構造説明図
運転手順

<table>
<thead>
<tr>
<th>順序</th>
<th>C1</th>
<th>C2</th>
<th>B</th>
<th>M1</th>
<th>M2</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>接続</td>
<td>なし</td>
<td>固定</td>
<td>回転</td>
<td>停止</td>
<td>——</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>検出</td>
</tr>
<tr>
<td>3</td>
<td>接続</td>
<td>なし</td>
<td>停止</td>
<td></td>
<td></td>
<td>——</td>
</tr>
</tbody>
</table>

回転

4 なし 接続 解除 停止 回転 ——

第2.7-2 図 付箇柄回転固定機構原理図
第2.7-3 図「もんじゅ」缶詰缶

"Monju" SPENT FUEL CAN
2.8 水中燃料貯蔵設備

水中燃料貯蔵設備は、所外搬出待ち貯蔵を要する使用済燃料構成要素を水中にて貯蔵するためのものです。水中台車、燃料移送機、燃料池冷却冷却装置及び燃料池ライニングから構成される。使用済燃料構成要素は、洗浄後、缶詰詰めまたは裸の状態で本設備に貯蔵される。本設備への使用済燃料等の受渡しは燃料出入設備により行われる。

また、使用済燃料等の所外搬出に関しては、本設備では燃料輸送容器（湿式キャスク、照射後試験用キャスク）にて燃焼燃料等を収納するまでの作業を行う。

第2.8-1 図に使用済燃料取扱ルート図を示す。

(1) 水中台車

水中台車は、水中において使用済燃料等（裸あるいは缶詰詰め）を、燃料出入設備本体Bから受け取り、燃料移送機受渡し位置まで移送する走行式台車で、台車、駆動装置、走行レール、床ドアアーバル及案内筒より構成される。

(2) 燃料移送機

燃料移送機は、使用済燃料移送機等を水中台車〜貯蔵ラック〜燃料輸送容器間で移送する走行・横行式移送機で、グリッパ、グリッパ駆動装置、案内管及び走行台車により構成される。第2.8-2 図に燃料移送機駆動原理図、第2.8-3 図に燃料移送機グリッパ構造図を示す。

(3) 貯蔵ラック

貯蔵ラックは、使用済燃料移送機等を水中で一時貯蔵するための箱形枠組構造のラックで、以下の貯蔵容量がある。

<table>
<thead>
<tr>
<th>取扱対象物</th>
<th>貯蔵本数</th>
<th>貯蔵形態</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 炉心燃料集合体及びプランケット燃料集合体</td>
<td>1412体</td>
<td>缶詰詰めA</td>
<td></td>
</tr>
<tr>
<td>2 制御棒集合体</td>
<td>741体</td>
<td>缶詰詰めB</td>
<td></td>
</tr>
<tr>
<td>3 固定吸収体</td>
<td>6体</td>
<td>あ
合計

1203体</td>
<td></td>
</tr>
<tr>
<td>4 中性子しゃへい体</td>
<td>432体</td>
<td>裸</td>
<td></td>
</tr>
<tr>
<td>5 予備</td>
<td>24体</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
（4）燃料池水冷却浄化装置
燃料池水冷却浄化装置は、貯蔵ラックに貯蔵される使用済燃料等からの崩壊熱（最大550kw）を除去し、燃料池の水温を所定の温度（52℃）以下に保つとともに燃料池水の放射性物質、腐食生成物、コロイド状物質等をろ過除去し、使用済燃料等の保管及び出し入れ作業に支障をきたさない水質を維持するとともに、脱塩を行い燃料池水の電導度を規定値以下に維持する。第2.8-4図に燃料池水冷却浄化装置系統図を示す。

（5）燃料池ライニング
燃料池ライニングは、燃料池内に純水を保持するためのステンレス鋼製の内張り容器である。
「もんじゅ」使用済燃料取扱ルート図
"Monju" ROUTE OF IRRADIATED FUEL SUB-ASSEMBLIES
第2.8-3 図 燃料移送機 グリップ構造図
第2.8・4 図
燃料池水冷却装置設置図
2. 9 新燃料受入貯蔵設備

新燃料受入貯蔵設備は、所内に搬入された新燃料核構成要素及び缶詰缶を燃料出入口設備
に引くまでに必要な開桝、検査、一時貯蔵、移送及び予熱を行う設備で、燃料容器
取扱装置、新燃料検査装置、新燃料移送機、新燃料貯蔵ラック、地下台車、地下台車新
燃料予熱装置等から構成されている。

第2.9-1 図に新燃料を受入れ貯蔵する設備の概要、第2.9-2 図に新燃料取扱ルート図
を示す。

（1）新燃料容器取扱装置

輸送容器1基へ回を燃料搬出入エリア（A-576）内で、燃料容器ジブクレーンにより搭
載し、新燃料取扱室（A-574）に移送して起立するもので、新燃料キャスク移送台車、キ
ャスク支持台、燃料搬出入口及び新燃料移送室監視用シャペイ窓で構成される。

（2）新燃料検査装置

新燃料検査装置は、新燃料核構成要素体が輸送容器に収容された状態で、輸送容器内の
空気をサンプリングし、アルファ線の検出を行って、集合体に破損等が生じていないこ
とを検査するもので、ダストサンプラ、集塵器等よりなる。

（3）新燃料移送機

新燃料移送機は、新燃料核構成要素体や缶詰缶、新燃料移送機輸送容器内蓋及び新燃料貯
蔵ラックシャペイプラグを着脱、昇降及び走行・横行移送するものでグリッパ、グリッ
パ駆動装置、案内管、走行台車、新燃料方位調整治具で構成されている。

グリッパには回転機能があり、燃料番号読み取りをＩＴＶを通して操作盤で行うことか
ら、グリッパを60°回転させて集合体の番号位置を変え、回転前後のどちらかで番号
読み取りが可能なようにしている。

新燃料方位調整治具は、新燃料移送機のグリッパの回転と相まって、炉心へ移送する
新燃料核構成要素の角度を設定するものである。

（4）新燃料貯蔵ラック

新燃料核構成要素及び缶詰缶の一時貯蔵を行うもので新燃料貯蔵ラックと缶詰缶貯蔵ラ
ックで構成され、それぞれ50体の貯蔵容量がある。
（5）地下台車
地下台車は、新燃料移送機と燃料移送機出入設備間の炉心構成要素及び缶詰缶の中継
移送と洗浄浄ろの燃料出入機本体Aドリップパンの保管を行うもので、移送機側案内管
、台車、駆動装置、走行レール、床ドアバルブ、可動案内筒より構成されている。

（6）地下台車新燃料予熱装置
地下台車新燃料予熱装置は、地下台車が新炉心構成要素及び燃料出入機本体Aドリッ
プパンを燃料出入機本体Aに受け渡す際、新炉心構成要素及び燃料出入機本体Aドリッ
プパンを予熱する装置で、加熱器、プロダ、空気冷却器、配管、弁類で構成される。
新炉心構成要素は150 ℃以上、ドリップパンは120 ℃以上に予熱する。
第2.9-3 図に地下台車新燃料予熱装置の系統構成を示す。
第2.9-1 図 新燃料を受入れ貯蔵する設備の概要
第2.9-2 図 「もんじゅ」新燃料取扱ルート図
"Monju" ROUTE OF NEW FUEL SUB-ASSEMBLIES
第2.9-3 図 地下台車新燃料予熱装置の系統構成
2. 10 燃料搬出設備

燃料搬出設備は、使用済燃料を所外に搬出する設備で、キャスククレーン、燃料出入設備通路クレーン、キャスク装荷装置等から構成される。

使用済燃料の搬出は、検査施設向輸送容器と高速炉際処理施設（試験施設を含む）向け燃料輸送キャスクの搬出に分けられる。第2.10-1図に燃料を搬出する設備の概要を示す。

（1）検査施設向輸送容器の搬出

検査施設向輸送容器の搬出は、更に破損燃料集合体と健全燃料集合体に分かれる。

① 破損破損燃料集合体

燃料出入設備通路において、燃料出入設備及びキャスク装荷装置により、破損破損燃料集合体を検査施設向輸送容器に収納する。その後、燃料出入設備通路クレーンにより検査施設向輸送容器をメンテナンス台車に搭載し、メンテナンス・廃棄物処理建物（M／B）に移送し、メンテナンスクレーンによりトレーラに搭載し、所外へ搬出する。

② 健全燃料集合体

燃料池内の貯蔵ラックに保管中の缶詰缶入り燃料集合体を、予め燃料池内キャスクピットに設置した検査施設向輸送容器に収納する。その後、キャスククレーンで検査施設向輸送容器をキャスク洗浄ピットに移送し、洗浄を行った後、キャスククレーンを用いてトレーラに搭載し、所外へ搬出する。

（2）燃料輸送キャスクの搬出

燃料輸送キャスクの搬出は、上記の検査施設向輸送容器（健全燃料集合体）と同様な方法で行う。
第2.10-1図 燃料を提出する設備の概要
2.11 燃取系計算機システム

燃取系計算機システムは、燃料取扱貯蔵設備の運転全体において、CRTによる監視の集約化、燃料等の移送処理に係わるスケジュール管理及びこれに基づく運転の自動化並びに予熱設備の監視制御を行うことにより、運転者の負担軽減及び運転の信頼性向上を図るものである。第2.11-1図に燃取系計算機システム構成図、第2.11-1表に燃取系運転監視対象設備、第2.11-2図に燃取系監視制御システムを示す。

このため、燃取系監視制御システムの中核として、一部の操作盤を除き、主要な設備を統括管理し、主要な運転状態、警報を集中監視するプロセス運転監視機能、自動化運転機能、予熱監視制御機能、燃料管理機能、記録帳票機能等から構成されている。

（1）プロセス運転監視機能

燃取計算機システムは、運転者が主盤上のCRT装置等の監視機器により燃取系各設備の状態を的確に把握し、確実な運転操作が遂行できるように、各設備の機器運転状態、プロセス状態及び警報等の監視を行う。また、本計算機システムにより運転の自動化を行う燃料移送処理系の設備に対しては、上記監視の他、自動化運転の進行状態の監視を行う。

（2）自動化運転機能

燃取系設備のうち、運転頻度が高く、かつ繰り返し操作となる燃料移送処理に係わる系統設備について、自動制御盤及び燃料交換自動化盤と調和し、予め入力され運転スケジュールに従って自動化運転を行うので下記の作業を自動化運転する。

① 新炉心構成要素及び空缶の搬入、貯蔵 （新燃料搬入受入運転）
② BVSと炉心間での炉心構成要素交換 （燃料交換運転）
③ 燃料出入試験機本体AのDP交換 （ドリップバン交換運転）
④ 使用済炉心構成要素洗浄、貯蔵 （使用済燃料廃棄処理運転）
⑤ 使用済炉心構成要素洗浄、貯蔵 （使用済燃料廃棄処理運転）
⑥ 使用済DPをBVSでNa溶解する洗浄前作業 （ドリップバン溶解返還運転）
⑦ 燃料出入試験機本体BのDP水抜 （ドリップバン水抜運転）
⑧ 燃料入缶材、使用済炉心構成要素の搬出 （燃料搬出運転）

第2.11-3図に燃取自動化運転範囲を示す。

（3）予熱監視制御機能

燃取計算機システムは、予熱監視制御機能として炉外燃料貯蔵設備のナトリウム充填・ドレン時、鈍化時、通常運転時、メンテナンス（通常、OP/T, C/T）時の各予熱運転
モードにおいて、ナトリウム及びナトリウムペーパを内包する機器や配管を予熱ヒータで加熱し、温度制御を行うとともに、予熱運転状態を監視する。

（4）燃料所在管理機能
燃料所在管理機能として、運転員により入力された燃料取扱計画を計画データとして保有するとともに、自動化運転を進行させるためのスケジュールに展開する。一方、自動化運転の実行結果として燃料等の移動に伴いデータを自動更新し、常に燃料等の所在を把握する。

（5）記録帳票機能
記録帳票機能として燃取系各設備の運転進行状態、警報メッセージ及び燃料取扱計画等を日本語タイプライタに印字出力し、記録帳票として残すことにより、燃取系各設備の保守、運転管理に有効に活用する。
第2-11-1図 燃取系計算機システム構成図

※1：設備の内訳を表-1に示す。
第2.11-1表 燃取系運転監視対象設備

<table>
<thead>
<tr>
<th>自動化運転対象設備</th>
<th>自動化運転対象外設備</th>
</tr>
</thead>
<tbody>
<tr>
<td>① しゃへいプラグ本体 (026)</td>
<td>① しゃへいプラグ窒素ガス冷却系 (021)</td>
</tr>
<tr>
<td>② 燃料交換装置 (511)</td>
<td>② しゃへいプラグアルゴンガス系 (022)</td>
</tr>
<tr>
<td>③ 炉内中継装置 (512)</td>
<td>③ しゃへいプラグシリコンオイル循環系 (023)</td>
</tr>
<tr>
<td>④ 燃料交換設備アルゴンガス系 (514)</td>
<td>④ しゃへいプラグフリーズ合金供給系 (024)</td>
</tr>
<tr>
<td>⑤ 燃料取出機本体 (521)</td>
<td>⑤ しゃへいプラグ持上圧力系 (025)</td>
</tr>
<tr>
<td>⑥ 燃料取出機冷却装置 (522)</td>
<td>⑥ 燃料交換機器室 (515)</td>
</tr>
<tr>
<td>⑦ 走行台車 (523)</td>
<td>⑦ 炉外燃料貯蔵槽冷却系 (533)</td>
</tr>
<tr>
<td>⑧ 燃料取出機予熱冷却装置 (524)</td>
<td>⑧ 炉外燃料貯蔵槽1次補助ナトリウム系 (534)</td>
</tr>
<tr>
<td>⑨ 炉外燃料貯蔵槽 (531)</td>
<td>⑨ 炉外燃料貯蔵槽2次補助ナトリウム系 (535)</td>
</tr>
<tr>
<td>⑩ ドアバルブガス置換設備 (533)</td>
<td>⑩ 炉外燃料貯蔵槽1次アルゴンガス系 (536)</td>
</tr>
<tr>
<td>⑪ 燃料洗浄設備 (550)</td>
<td>⑪ 炉外燃料貯蔵槽2次アルゴンガス系 (537)</td>
</tr>
<tr>
<td>⑫ 燃料缶詰装置 (561)</td>
<td>⑫ 炉外燃料貯蔵設備ナトリウム漏えい検出設備 (530)</td>
</tr>
<tr>
<td>⑬ 号誌害圧調節装置 (562)</td>
<td>⑬ 炉外燃料貯蔵設備予熱設備 (530)</td>
</tr>
<tr>
<td>⑭ 水中台車 (571)</td>
<td>⑭ 燃料検査設備 (541)</td>
</tr>
<tr>
<td>⑮ 燃料移送機 (572)</td>
<td>⑮ 燃料池水冷却系 (574)</td>
</tr>
<tr>
<td>⑯ 新燃料移送機 (584)</td>
<td>⑯ 燃料容器取扱装置 (581)</td>
</tr>
<tr>
<td>⑰ 地下台車 (586)</td>
<td>⑰ キャスター取扱装置 (591)</td>
</tr>
<tr>
<td>⑱ 地下台車新燃料予熱装置 (587)</td>
<td></td>
</tr>
</tbody>
</table>

なお、以下の設備については、現場操作のみとなるため、監視対象から外している。

① ナトリウム透視装置 (071)
② 炉内検査孔設備 (513)
③ 新燃料検査装置 (582)
④ キャスター洗浄装置 (592)
⑤ キャスタークレーン (593)

注）1. (　) 内は系番号を示している。
2.12 共通保修設備

共通保修設備は、機器移送設備と機器洗浄設備から構成される。

2.12.1 機器移送設備

機器移送設備は、メンテナンス台車及びメンテナンスクレーンから構成されている。

メンテナンス台車及びメンテナンスクレーンとも、取扱対象機器のうちで最大の1系主循環ポンプのメンテナンス、移動が可能な容量（最大200トん）とされている。

2.12.2 機器洗浄設備

機器洗浄設備は、保守、保修及び廃棄対象のナトリウム付着機器（被洗浄体）のナトリウムを洗浄、除去するための設備で、洗浄槽類、循環系、廃ガス系、廃液系及び供給系より構成されている。被洗浄体により、1系ポンプ洗浄ライン、燃焼機器洗浄ライン、2系機器洗浄ラインを構成して洗浄運転を行う。

第2.12-1図に機器洗浄設備の概要を示す。

（1）洗浄槽類

洗浄槽類は、燃焼機器洗浄槽及びポンプ洗浄槽、2系機器洗浄槽、2系小型機器洗浄槽より構成される。

各洗浄槽類では供給系より洗浄に必要な各種流体を受け、窒素ガス雰囲気中で緩やかにナトリウムと水を反応させて洗浄する。洗浄の際に発生する廃ガス及び廃液は廃ガス系及び廃液系へ移送される。

① 燃焼機器洗浄槽

燃料交換設備、燃料投入機グリッパ等の長尺の1系ナトリウム（放射性）付着機器の洗浄に用いる。燃焼機器洗浄槽では、温潤窒素ガス洗浄、水洗浄及び温水減圧洗浄を行う。洗浄槽及び被洗浄体の水分は熱風及び減圧法により乾燥させる。

第2.12-2図に機器洗浄工程（燃焼機器洗浄槽）を示す。

② ポンプ洗浄槽

ポンプ洗浄槽は、1系主循環ポンプを始めとする1系ナトリウム付着機器の洗浄に用いる。ポンプ洗浄槽でも燃焼機器洗浄槽と同様な方法で洗浄、乾燥を行う。

③ 2系機器洗浄槽

2系機器洗浄槽は、2系の大型機器である2系主循環ポンプ、蒸発器、過熱器を洗浄するものである。

④ 2系小型機器洗浄槽

2系アルゴンガス系ベーパトラップ用金属フィルタ、2系弁等の2系ナトリウム（非放射性）が付着する小物機器の洗浄に用いる。

燃焼機器洗浄槽、ポンプ洗浄槽及び2系機器洗浄槽には、温水減圧時に温水を段階
的に供給するためのノズルが多段に設けられており、水面付近に80℃の温水を供給して
沸騰させ、液位の上昇に伴って連続的に沸騰させることにより被洗浄体の洗浄効果を高
めるものである。
また、各洗浄槽での洗浄が難しい物に対して、将来の洗浄用キャスクに洗浄用の蒸気
、洗浄水等が供給できるよう各洗浄槽週辺には、蒸気、純水、窒素のノズルが設置され
ている。
（２）循環系
溫水減圧洗浄時に各浄槽からの温水を各循環ポンプで昇圧した後、各浄槽の出
口フィルタを通し、温水加熱器で加熱し循環運転を行う。また、浄洗後の廃液系への排
水ポンプとしても使用する。
なお、燃焼器洗浄系及びポンプ洗浄系からの温水は放射化したC.P が含有されて
ている。本設備を含む下流側機器へのC.P 付着による線量率上昇防止のため、燃焼器洗
浄槽及びポンプ洗浄槽の出口にはフィルタが取付けられ、浄水中のC.P を除去する。
（３）廃ガス系
各浄槽から排出される廃ガスは、復水器により冷却されスクラバに入り、気液分離
及びミストの除去が行われ、排ガス加熱器で昇温された後、浄化フィルタユニットでよ
う素等を除去する。浄化フィルタユニットを出た廃ガスは浄化ファンで昇圧され、放射
線監視設備で放射能濃度の監視を行い排気筒より大気に放出される。
（４）廃液系
廃液系は各浄洗系より排出される廃液を廃水冷却器により冷却した後、廃水タンクに
一時貯留し、一時貯留した廃液は、廃水移送ポンプにより液体廃棄物処理系へ移送され
る。
（５）供給系
洗浄に必要な各種流体を受入れ、運転条件に合わせて圧力、温度、流量等の調節、混
合、脱水等の処理を行い洗浄系等に供給するもので、蒸気、再使用水、純水、窒素ガス
、アルゴンガス、空気、除染剤等を取り扱う。
第2.12-1図 機器洗浄設備の概要

注記：各機器名称で（夫通保険設備）の記載は省略する。
機器洗浄工程（燃料取扱機器洗浄槽）

1）洗浄槽ガス置換
（空気→N₂）

2）湿潤窒素ガス洗浄
（Na+H₂O→NaOH+1/2 H₂）

3）水浸漬洗浄

4）液体抜き

5）温水減圧洗浄

6）液体抜き

7）乾燥

8）洗浄槽ガス置換
（N₂→N₂）
2. 13 固体廃棄物貯蔵プール設備

原子炉施設から発生する固体廃棄物を水中貯蔵する設備で、M／Bライニング設備、キャスク受台車、固体廃棄物貯蔵ラック及び浄化設備から構成される。

貯蔵対象物を以下に示す。

① 炉体廃棄物
 - CRDM上部案内管部
 - 液面計
 - 炉外中性子検出器・炉内中性子計装検出器案内管
 - 炉心出口計装
 - 炉心上部機構・予備孔プラグ（B）
 - 炉外計装品

② 燃料洗浄設備使用済フィルタ（共通保修設備使用済フィルタを含む）

③ 固体廃棄物貯蔵プール設備ろ過器使用済フィルタ

④ その他の廃棄物

原子炉施設から発生した炉体廃棄物及び他の固体廃棄物はキャスクに収納され、メンテナンススケーパって固体廃棄物貯蔵プール上の保余エリア（M-501）に設置されたキャスク受台車に搭載され、キャスク受台車の位置決め機能等により、プール内ラックの所定場所に水中貯蔵される。

浄化設備は、プール内の水を浄化するろ過及び脱塩装置であり、固体廃棄物貯蔵プール及び固体廃棄物貯蔵プール浄化系機器室に設置される。浄化設備はプール水中の懸濁固形分、コロイド状物質、腐食生成物等を除去し、プール水の水質を保持するもので、循環ポンプ、ろ過器、脱塩器、樹脂供給ホッパ、樹脂ストレーナ、配管及び弁類等から構成されている。

第2.13-1図に固体廃棄物貯蔵プール浄化系系統図を示す。
固体廃棄物貯蔵プール浄化系系統図
2.14 その他関連設備

燃料取扱貯蔵設備に関連の深い設備として原子炉構造保安設備、原子炉格納容器機器
搬入口（機器ハッチ）がある。

原子炉構造保安設備は、ナトリウム透視装置、原子炉機器輸送ケーシング、プラグ取
扱機、保険用取扱機、炉外計装取扱機からなる。このうち原子炉機器輸送ケーシング、
プラグ取扱機を燃料交換の際に使用する。

(1) 原子炉機器輸送ケーシング（A HM）

原子炉機器輸送ケーシングは、燃料交換時に燃料交換装置（F HM）、炉内中継装置
（IV TM）を炉上部に搭載するために使用する大型の輸送キャスコである。

F HM、IV TMは、原子炉運転中はM/Bの燃焼機器装置の収納容器に保管されて
おり、燃焼準備作業において、A HMを装置のドアバルブ上に据付、A HM及びドアバ
ルブ間をアルゴンガスにしてから、ドアバルブを開け、A HM内部に収納し、メンテナ
ンス台車に搭載して、原子炉建物内に輸送し、ボーラクレーンで起立して、炉上部に据
付、ドアバルブを開けて、炉内に挿入する。また、燃料交換終了後は、炉上部からF H
M、IV TMを撤去する後始末作業に使用する。

(2) プラグ取扱機

プラグ取扱機も原子炉機器輸送ケーシングと同様に燃料交換準備、後始末作業で使用
するも、炉上部のしゃべいプラグのF HM、IV TM据付位置に通常はしゃべいの
ためのプラグが装荷されていることから、F HM、IV TM据付前に取り外しておき、
燃料交換後始末において、F HM、IV TM撤去後にプラグ取扱機を使用してプラグを
挿入する。

(3) 原子炉格納容器機器搬入口（機器ハッチ）

機器ハッチは、燃料交換時に燃料出血設備が炉上部と炉外燃料貯蔵槽の間を移送運転
する通路となる。また、燃料交換設備の炉上部への据付においても通路となることから
、燃料交換時には最初に機器ハッチを開け、レールブリッジを取り付けて、メンテナン
ス台車の通路を確保する。
3. 燃料取扱貯蔵設備の運転・保守経験

高速増殖原型炉「もんじゅ」の燃料取扱設備は、平成4年7月に総合機能試験及び国の運転性能に係る使用前検査を完了し、動燃事業団に引き渡された。

平成4年7月7日最初の炉心燃料のサイトへの輸送、搬入が行われた。平成5年10月13日に内側燃料装荷を開始し、11月3日に内側108体の装荷を終了した。

平成6年1月27日から外側燃料装荷を開始し、4月5日168体で最小臨界を達成した。引き続き燃料を装荷して5月20日初期炉心仮構成（198体）を完了した。

その後、燃料等価反応度評価等の出力分布試験において、炉心へ試験用集合体を延べ約120体を炉心に装荷、取り出しを行った。

平成7年2月からは炉内燃料貯蔵槽（ＥＶＳＴ）に取り出した模擬体の洗浄処理運転を行い、11月に198体の取り出しを終えた。

<table>
<thead>
<tr>
<th>時期</th>
<th>累積体数</th>
<th>取扱延べ日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>中性子源装荷時</td>
<td>9体</td>
<td>3日</td>
</tr>
<tr>
<td>内側燃料装荷時</td>
<td>108体</td>
<td>16日</td>
</tr>
<tr>
<td>外側燃料装荷時</td>
<td>131体</td>
<td>32日</td>
</tr>
<tr>
<td>出力分布試験時</td>
<td>121体</td>
<td>46日</td>
</tr>
<tr>
<td>計</td>
<td>369体</td>
<td>97日</td>
</tr>
</tbody>
</table>
内側炉心燃料構成時のトピックス

1. 燃料装荷は計画どおり約90分／体で実施できた。

2. 装荷中の発生事象

・燃料出入設備が走行中、台車走行ストローク読み取り不良により
走行停止し、連動運転が停止した。

・燃料交換装置により、新燃料を炉心に装荷中、新燃料集合体が適
切に挿入回転せず下降動作が停止した。

・装荷作業前に、燃料出入設備本体Aグリッパの下降操作を行った
がグリッパ昇降テーブに付着したNaの影響によりグリッパが下
降しなかった。

3. 108体装荷中にドリップパンを3回交換したが、その際に移送
ポットからドリップパンへのNa滴下量を計測した。

設計値45g／体以下に対し、約17～23g／体であった。
また、保守点検については、平成4年度からこれまで毎年実施してきており、プランの試験計画と使用実績等を考慮して点検対象機器、点検項目を決定している。
個設備の保守実績は別に記載することとし、ここでは燃焼設備の共通的な設備である電源、計測制御設備の点検実績を記す。

・平成4年度：電源設備
 コントロール盤
 計測制御設備
 盤（365台）
 一般点検

・平成5年度：計測制御設備
 盤（単体884台）
 器械校正
 （ルート190）
 （健全性60台）

・平成6年度：電源設備
 電源盤（IVR、VVVF7面）
 計測制御設備
 計器（単体1050台）
 器械校正
 （ルート650）
 （健全性110台）

・平成7年度：計測制御設備
 計器（単体51台）
 器械校正
 （ルート128）

以下に燃料取扱貯蔵設備の各設備の運転、保守実績について述べる。
3. 1 しゃべいプラグ

3.1.1 しゃべいプラグの運転実績

平成5年9月から10月にかけて、燃料装荷のための運転員への訓練で模擬燃料体を延べ約20体燃料交換した。その後、内側燃料装荷、外側燃料装荷、出力分布試験等で延べ約370体燃料集合体等を取り扱っている。また、その間流量分布評価試験において燃料交換装置に代えて流量計測装置を取り付け、炉心の流量分布測定で回転プラグを回転させ所定の炉心位置での流量測定に使用した。平成7年2月以降は核加熱試験を開始したことから基準位置で停止している。

回転プラグの保守点検において留意するポイントは、フリーズシールのバックアップとして用いているエラストマシールである。「常陽」において運転初期に損傷した経験があり、「もんじゅ」においてはR＆Dの段階からその対策がとられ、その耐久性について確認が行われている。設計上は、約5年（年2回の燃料交換として10回分の燃料交換に相当）の交換周期が想定され、大規模確認試験により、5年間での回転プラグの回転回数を1000回転と設定し、経年変化、余裕を考慮して3倍の3000回転以上、起動停止回数についても3000回以上実施しリスク等の異常がないことが確認されている。

燃料交換1体で回転プラグは、3回旋回するが、炉心の位置によって回転角度は違ってくるから、燃料交換1体で1回転するものと仮定して、これまでの累積回転数を別表に示す。

累積回転数は約1200回におよんでおり設計値を超えている。起動停止回数についても確認試験時の回数を超えている。更に燃料交換に先立って回転プラグが旋回する前にジャッキアップし、燃料交換後はジャッキダウンする昇降動作がある。この際はエラストマシールに上下方向のせん断力が負荷される。「もんじゅ」運転開始後は5年間で僅か20回であるが、製作からこれまでの累積で172回程度と想定され、エラストマシールはほぼ交換時期に達しているものと思われる。
<table>
<thead>
<tr>
<th>試験・燃料交換</th>
<th>回転数</th>
<th>起動停止回数</th>
<th>時 期</th>
<th>昇降回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場内単体機能試験時</td>
<td>約440回</td>
<td>約1750回</td>
<td>H1年 4月</td>
<td>約60回</td>
</tr>
<tr>
<td>据付後単体機能試験時</td>
<td>約100回</td>
<td>約400回</td>
<td>H2年 9月</td>
<td>約30回</td>
</tr>
<tr>
<td>総合機能試験時</td>
<td>約300回</td>
<td>約1200回</td>
<td>H4年 7月</td>
<td>約44回</td>
</tr>
<tr>
<td>流量分布予備試験時</td>
<td>約30回</td>
<td>約90回</td>
<td>H5年 5月</td>
<td></td>
</tr>
<tr>
<td>燃料交換慣熟運転時</td>
<td>約20回</td>
<td>約60回</td>
<td>H5年 9月</td>
<td></td>
</tr>
<tr>
<td>内側燃料装荷時</td>
<td>約120回</td>
<td>約360回</td>
<td>H5年11月</td>
<td>約40回</td>
</tr>
<tr>
<td>流量分布評価試験(1)時</td>
<td>約20回</td>
<td>約60回</td>
<td>H5年12月</td>
<td></td>
</tr>
<tr>
<td>外側燃料装荷時</td>
<td>約100回</td>
<td>約300回</td>
<td>H6年 5月</td>
<td></td>
</tr>
<tr>
<td>出力分布試験時</td>
<td>約60回</td>
<td>約180回</td>
<td>H6年 9月</td>
<td></td>
</tr>
<tr>
<td>流量分布評価試験(2)時</td>
<td>約20回</td>
<td>約60回</td>
<td>H6年11月</td>
<td></td>
</tr>
<tr>
<td>累積</td>
<td>約1210回</td>
<td>約4460回</td>
<td></td>
<td>約174回</td>
</tr>
</tbody>
</table>
3.1.2 しゃべいプラグの保守実績

・平成4年度：しゃべいプラグ冷却系窒素ガスプロワA、B 分解点検

・平成5年度：シール部（固定シール、撚動シール部） 漏えい確認
回転プラグ持上油圧装置 油分析
回転プラグ水平度検出器 機能確認

・平成6年度：シール部（固定シール、撚動シール部） 漏えい確認

3.1.3 しゃべいプラグの運転、保守における特記事項

（1）しゃべいプラグ窒素ガス冷却系プロワ異音発生（H5年2～5月）

しゃべいプラグ窒素ガス冷却系プロワは、しゃべいプラグを冷却してしゃべいプラグ
上板の温度を最高使用温度（100℃）以下に保持する。

総合機能試験中にプロワBのメカシール部から油漏れが生じていたことから、H4年
2月分解点検を行い、メカシールの交換を行った。その後、試運転を行ったが、B号機
でインペラとケーシング内面に異物の混入による接触が発生した。分解して確認したと
ころインペラに傷（幅20MM、深さ0.3MM）を生じていた。この傷による性能への影響は僅
か0.6％で問題ない。再発防止対策として、プロワ入口側配管にストレーナ（100パッシャ）
を設置した。2月24日に再び試運転を行ったところ、またしてもB号機に異音が発生
した。異音の原因は、インペラ同士の接触であった。工場に持ち帰って、原因究明と補
修を行った。原因は「インペラシャフトとパイロットギャ部の打ち込み不足及び押さえた
ナットの締め付け不足により起動時にギャとシャフトが滑りタイミングがずれてインペ
ラが接触した」と考えられた。軸のギャテーパ部を再加工してギャとの接触面を向上させ、以後の試運転及び性能試験の冷却運転において問題なく運転されている。
（２）平成5年度設備点検（H 5年6月）

シャハイプラグは原子炉カバーガスパウンダリを構成する重要な機器である。部品の合わせ面は、二重Oリングでシールされ、かつOリングの中間にはバックアップガスが供給され、原子炉からの放射性ガスまたは原子炉内への空気の進入がないよう気密保持されている。その気密性能の確認のため漏えい試験を実施した。ほとんど判定値を満足していたが、原子炉内は既にナトリウムが充填されて予熱保持されていることから、温度変化が大きい箇所があり、測定結果に誤差が大きく試験方法について今後検討を要する。

（3）回転プラグと固定プラグとの間隙部の目視確認（H 5年2月、4月）

回転プラグ外周部と固定プラグ内面は僅か10mm（片側）のギャップしかない。この間隙部に炉内のナトリウムベーパ及びミストが付着すると、回転プラグの昇降の妨げになるばかりでなく回転動作にも影響を与える。この間隙部へのナトリウム付着防止のため固定プラグにZリングを設け回転プラグが着床した状態（原子炉運転中）でギャップを5mmとしている。Zリングの水平部に上昇してくるナトリウムベーパ及びミストを積極的に溜め、回転プラグとの隙間をなくして、それ以上の円筒部へのナトリウムの上昇を防止するためのものである。

この間隙部及びZリングへのナトリウム付着状況を監視するための点検孔が回転プラグに2方向（計6個）にあり、これまで、SKS中、プラント特性予備試験（2回）ファイバースコープを挿入して状況を観察した。

プラント特性予備試験時のナトリウム温度が約325℃に上昇後、温度を約200℃に下げて観察したところ、Zリング及び円筒部ともベーパがあっすらと付着していた。

その後、ナトリウム温度が397℃まで上昇したことから、温度上昇に伴うベーパの円筒部への上昇及びZリングへのNa付着状況を観察した。Zリング部にはナトリウムが堆積しているのが観察された。円周部は前回に比べやや多くなっていたが厚さとしては1mm未満程度であった。（もしご参考まで MS-92-040）

第3.1-1 図にナトリウム蒸着防止構造を示す。
第3.1-1 図 ナトリウム蒸着防止構造
（4）回転プラグ水平度検出異常（H 5年5月）

回転プラグを回転する前に油圧ジャッキにより持ち上げ、使用を終了したら持ち下げ
る昇降動作を2群の油圧シリンダで行うが、シリングの不調等により傾くと回転プラグ
と固定プラグに干渉を生じ、損傷の原因になることから回転プラグに一定の傾き（±
1.25mm）が生じた場合、警報を発することがもに昇降動作を停止するため水平度を監視し
ているのが水平度検出器である。

総合機能試験時から昇降していないにもかかわらず警報が発報することがあった。そ
の要因は回転プラグの温度変化による熱変位により水平度検出器が影響を受けるものと
推定されたことから検出器の固定プラグ方法を変更し、4点固定から2点固定にする等
種々の対策をした。しかし、改善の効果は見られず、現状は昇降動作前に検出器の指示
値をリセットしに炉上部まで運転員が行っている。水平度検出の必要性、設定値等につ
いて再検討が必要である。

（5）シリコンオイル漏出（H 6年12月）

しゃべいプラグシリコンオイル循環系の計器点検のためシリコンオイル供給タンク
の油面計を確認したところ油面指示がなく空の状態であった。しゃべいプラグシリコ
ンオイル循環系は、燃料交換等のために回転プラグを回転する際の摺動抵抗を低減し
てエラストマーシールにかかる荷重を軽減するとともにシール性を向上させるためのも
のである。

流出先を調査したところドレンタンクに約32L、回転プラグの仕切板上板部全周
にわたってオイル（約30L）が溜まっていた。漏出の原因は明確ではないが、何ら
かの原因でエラストマーシール内圧とシリコン供給圧力のバランスが崩れたものと推定
される。

第3.1-2 図にシリコンオイル漏洩ルートを示す。
第3.1-2 図 シリコンオイル漏洩ルート
（6）SKS時の残件

SKS期間中に起きた事象で以下の2件については、回転プラグの分解点検時に対策を実施することで、動燃とメーカとの間で確認されており、メーカの責任で処置することになっている。

① 回転プラグ持上油圧系A群シリング停滞現象

油圧装置により持ち上げ動作を行った際に、回転プラグが固定プラグ上に着地した直後、いわゆる無荷荷状態においてA群シリングロッドが下降せず、停滞が時々発生した。

調査したところ、A群3個のシリングのうち1個（AX-501）にロッド側からヘッド側への内部リーケがあることが判明した。リーケの原因としては、シール面の傷、チフロン製リング及びOリングの変形等と考えられるが、補修するには約2か月かかり、SKS工程への影響が大きい。また、本事象は昇降動作時に毎回発生するものではなく、発生してもシリングロッドが無荷荷の状態であり現状のまま運転しても機能上は支障ないことから、回転プラグの分解点検時に交換することとした。

当面の対策としては、現状のまま運転を行うこととする。停滞が発生しインタロックが作動した場合は手動操作で解除することとした。また、今後、頻発に発生するようであれば当該シリングを隔離し、2台運転することを考慮し、2台による昇降動作確認試験を実施した。

なお、シリングの改善案を検討し、確認試験を実施した。詳細な原因は分解点検をしていないと明らかになりないが、「圧力が徐々に逆転する状況下でのシール溝内の圧力導入が不十分」と推定している。このような状況においてもシール性を確保するためシールリング端部に切欠を設け、確認試験を行って信頼性が向上することを確認した。従って、次の交換時は、全てのシリングについて改善したシールリングを採用する予定である。

第3.1-3 図に持上動作説明図、第3.1-4 図に停滞発生時チャート、第3.1-5 図にシール構造と作動原理、第3.1-6 図にシリングの動作とこれに伴うシールの作動を示す。
第3.1-3 図 持上動作説明図
92-4-1
回転プラグ持上げ

第3.1-4 図 停滞発生時チャート
テフロン製の矩形シールリングとフッ素ゴムOリングを組み合わせたセルフシールタイプのシールである。テフロン製シールリングの張り代とフッ素ゴムOリングのつぶし代でシリングチューブ内面に密着させると共に、セルフシールタイプのため油圧の圧力による緊張力がシール性確保に寄与している。

第3.1-5 図 シール構造と作動原理

回転プラグ上昇時

回転プラグ下降時

回転プラグ着地後のシリング単体下降時

回転プラグ最大荷重を支える負荷荷重が小さく、ロック側にかかる低圧降圧力（4.5 kg/cm²）のみが作用した状態となる。この時、ロック側圧力は約44 kg/cm²から約22 kg/cm²に変化し、正常時の力にはロック圧力によりシールが満下側に押しつけられた状態となる。シールが満下側に移動することにより、ロック圧力が満内に導入されシールリングには油圧による緊張力が作用することになる。

何らかの原因により、シールの満下側への移動が正常に行われなかった場合には満内への油圧の導入ができず、緊張力によるシール効果が期待できないことになる。

※：22 kg/cm²はシリングのロック/ロック面圧比で定まる圧力である。

第3.1-6 図 シリングの動作とこれに伴うシールの作動
対策

現状の設計では、シールリングが油圧に押されてオーリング溝内を移動することにより油圧を導入する隙間がある、セルフシールが働かず構造を採っている。このため、前項に示したように、シールリングの移動性（動き）が悪くなりセルフシールが働かなくなり、内部漏れを起こす現象が発生することになる。

今回のような不具合の再発を防止するため、以下に示すように、シールリングの移動性（動き）に依存しないシール構造に設計変更したい。

[シールリング構造]
シールリングの両端面に油圧導入用の溝を設ける。
溝個数：各端面に２ヶ所（0° - 180°方向および90° - 270°方向）
溝寸法：幅 6 mm、深さ 0.4 mm

[有効性]
シールリングに設けた上記溝部から油圧が導入されるため、シールリングの移動性（動き）に依存せず、セルフシールが働く。
シールの動作性については、「シリンダ内部漏れ確認試験」で確認した。「吹き抜け現象」が発生したケースにおいて、シールリングのみを上記構造のものと入れ換えて試験をした結果、良好なシール性能を得ることができた。
② フリーズシールヒータ断線

回転プラグ及びFHМの試験に伴いフリーズシールの連続運転を行ったところ、運転開始から3週間目に、ヒータブロックNo.5の電流値に異常が発生した。原因を調査した結果、ヒータNo.026 H 1-5-48の断線またはケーブル取出口端子部の異常であるとの結論に達した。このためNo.026 H 1-5-48のヒータを予備ヒータ(026 H 1-5-50)と入替えた。

電流異常の原因がヒータ本体の不具合によるものか、ケーブル取出口端子部の不具合によるものかについては、当該部分がしゃべいプラグの内部に位置することから調査ができなかった。回転プラグの分解点検時（エラストマシール交換時）にヒータ廃弛を分解し確認することとした。

なお、TKS時にもヒータブロックNo.4のヒータNo.32, 34とヒータブロックNo.8のヒータNo.75の計3本に導通不良があり、予備のヒータに代えた経緯がある。

ヒータが導通不良に至った要因としては、種々のことが考えられるがほとんど使用開始初期に生じていることから、現地掘付時の施工不良による可能性が大きい。

第3.1-7図にフリーズシール仕切板ヒータ・熱電対配置展開図を示す。
第3.1-7 図 フリーズシール仕切板 ヒータ・熱電対配置展開図
（仕切板内側から見た図）

記号説明

↑ : 予備ヒータ
○ : 防御用T/C位置（8本）
△ : 放射用T/C位置（4本）
□ : 建物製換用T/C位置（2本）
3. 2 燃料交換設備

3.2.1 燃料交換設備の運転実績

燃料交換設備は燃料交換時に燃料交換装置（FHMT）を回転プラグに、炉内中継装置（IVTM）を固定プラグに据え付けて燃料交換運転を行う。燃料交換後は、取り外して付着ナトリウムを洗浄除去し、メンテナンス・廃棄物処理建物（M/B）の保管箇場で原子炉運転中保管する。

平成5年8月に燃料装荷のため炉上部に据付、9月に燃料装荷習熟運転で模擬燃料体約20体の取扱を行った後、10月12日に中性子源集合体2体、13日から3日まで内側炉心燃料108体を区8体/日で実施した。その後、炉内流量分布評価試験のためFHMTを取り出し、流量計測装置（FMR）を設置した。取り出したFHMTはナトリウム洗浄後、パンタグラフ及びグリップについて点検した。

平成6年1月に再度、炉上部に据付、1月28日から外側燃料の装荷を開始し、4月5日168体で初臨界を達成し、5月20日198体の初期炉心構成を完了した。

その後、出力分布試験のために試験用集合体を約60体燃料交換し、10月FHMT、IVTMを撤去した。

3.2.2 燃料交換設備の保守実績

- 平成4年度 FHMTパンタグラフ 分解点検
 FHMT昇降駆動装置 内部点検、機能確認

- 平成5年度 FHMTパンタグラフ、グリップ 分解点検
 燃交アルゴンガス系真空ポンプ 分解点検

- 平成6年度 FHMT本体 分解点検
 燃交アルゴンガス系真空ポンプ 分解点検
 IVTMドアバルブ 開放点検
 燃交アルゴンガス系FHMT軸封装置 供給ガス流量計 分解点検

- 平成7年度 FHMT本体駆動部 分解点検
 FHMT本体、グリップ 分解点検
 FHMT昇降駆動装置 内部点検、機能確認
3.2.3 燃料交換設備の運転、保守における特記事項

（1）燃料交換装置パンタグラフアーム収納不良（平成4年9月）

パンタグラフアームはグリッパを保持して、F H Mを炉内へ出し入れする際は閉じた
状態で行い、炉内でパンタグラフアームを抜けて所定の回転半径として、回転ブラグと相
まって所定位置の燃料の頂部に位置決めするもので、左右、上下各1対（計4本）のア
ームで構成されている。

SKSを終了後の後始末作業でナトリウム洗浄後、M／B機器試験ビットにおいてF
HMの動作確認を行っていた際に、パンタグラフアームが所定の位置まで収納（閉じ）
されない事象が発生した。グリッパの本体からの飛び出し量は僅かであり、即、問題にな
るものではないが、このまま放置して次回の燃料装荷で炉内に設置し、飛び出し量が増
加するとF HMを取り出せなくなることから、その原因を調査した。

調査した結果、パンタグラフアームはグリッパをはさむようにして上下各2枚で構成
されているが、そのアームに変形（曲がり）が生じて収納部において本体部と干渉して
いることがわかった。工場に持ち帰り詳細に寸法計測したところ、左右阿ームはほとん
ど曲がりがなかった（2mm以下）が、右側アームに約10mmの曲がりがあった。曲がり
の原因是工場製作時の機械加工による残留応力がナトリウム中試験で開放されたことに
よると推定された。これは工場製作時に右側アームに製作不良が生じ、再製作したが納
期の関係から機械加工のステップを急いだため、左側に比べ右側のアームにより大きな
初期変形及び残留応力が生じた状態で組立てられたものとおもわれる。

対策として、4枚のアーム全てについてプレスにより修正し、寸法安定化熱処理を行
った。また、万一、パンタグラフアームに再度の変形が生じたとしても、収納できるよ
う駆動モータの容量を2倍にした。（但し、閉時の停止トルクは変更していない。）

第3.2-1 図にパンタグラフ収納状態、第3.2-2 図にパンタグラフ機構の分解点検範囲
説明図、第3.2-3 図にパンタグラフアームの曲がり測定結果（1/4〜4/4）を示す。
第3.2-1 図 ボンプタンクのリサイクル状態（プリッパーから呈示）
第3.2-3 図 パンタグラファームの曲がり測定結果（1/4）

パンタグラファーム（下・右）の曲がり測定結果
Na試験後及びプレス曲げ後

プレス曲げ修正後…ナトリウム試験後

パンタグラファーム（下・右）の曲がり測定結果
プレス曲げ後及び熱処理後

プレス曲げ修正後…熱処理後
第3.2-3 図 パンタグラファームの曲がり測定結果

パンタグラファーム（上・右）の曲がり測定結果
ナトリウム試験後及びプレス曲げ後

パンタグラファーム（上・右）の曲がり測定結果
プレス曲げ後及び熱処理後
第3.2-3図 パンタグラファームの曲がり測定結果（4/4）

パンタグラファーム（上・左）の曲がり測定結果
ナトリウム試験後及びプレス曲げ後

プレス曲げ修正後

位置（mm）

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

曲がり量

0.5 1 1.5 2

0 0.5 1 1.5

-0.5

-1

-1.5

パンタグラファーム（上・左）の曲がり測定結果
プレス曲げ後及び熱処理後

プレス曲げ修正後

熱処理後

位置（mm）

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

曲がり量

0 0.2 0.4 0.6

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-130-
（2）平成4年度点検（平成4年10月）

FHミはSKSにおいて、約1燃焼相当の稼働実績と更に偏心試験等の過酷な状態での試験を行ったことから、本体についてはFHミ洗浄性確認試験後、SKSの後始末として点検を行った。一方、FHミ昇降駆動装置についても製作後、SKSにおいて本格的に稼働し、平成5年度には燃料装荷で引き続き使用していくことから、昇降駆動装置について点検（内部点検、機能確認及びオイル交換）を行った。

（3）平成5年度点検（燃料装荷前点検）（平成5年6月）

アルゴンガス系真空ボンプの分解点検を行った。アルゴンガス系真空ボンプは燃料交換時に燃料吸入機本体Aが燃料吸入孔接続筒に接続した際に、吸入機及びIVTMドアバルブ間をアルゴンガス置換するとともに吸入機が使用済燃料を受け取って切離しを行う場合に空気置換するための真空引きに使用される他、炉上部機器のメンテナンス時等の機器の取付、取り外し時にも使用される。SKSでの使用実績が多かったことと更に燃料装荷で使用頻度が多いことから、燃料装荷を円滑に実施するため点検した。

（4）FHミ設付後の動作不良（H6年1月）

外側炉心燃料装荷のため流量計測装置を取り外して、FHミを握え付けた後の動作試験において、昇降ストローキン確認のため、炉心アドレス7A1にFHミクリッパウを下降させたところ、感知ロッド爪開閉準備位置状態表示が点灯せず、下降荷重超信号により自動停止した。その時のストローク表示は－33mmであった。上昇下降操作を再度実施したが同様な結果であった。これらのことから、クリッパは歯心構成要素頂部に着床しているにもかかわらず、感知ロッド爪開閉準備位置信号が出ず歯心構成要素つかみ操作ができないものと推測された。

リミットスイッチ及び電気回路の不良が考えられることから、駆動部を開放して点検したが、正常であった。その他の要因として、感知ロッドは爪開閉ロッドの中を上下する二重管構造であることから、その間隙にナトリウムが混入して動作不良を起こしていことが考えられた。そこで感知ロッド上端に油圧ジャッキにより荷重（300Kg）を加えたがロッドのたわみ程度（2mm）しか下降しなかった。そこで荷重を取り除いた状態でロッドにプラスチックハンマで打撃を数回与えたところ、荷重を加えた時よりも大きな
変位が生じ、人力においても変位することが確認できた。更に人力を加えたところ15mm
（正常値）の変位が確認され、リミットスイッチの作動も確認できた。そこで昇降駆動
装置を握え付けて補助盤からの操作による作動確認を行い開閉倉許可条件成立の表示が
点灯し、グリッパ倉開鈑動作が正常に行えることが確認できた。

今回の感知ロッド動作不良の原因は、二重管部のナトリウム不純物の固着であったこ
とはほぼ間違いなかったようである。これについてはこれまでにあった二つの事象から
FHМ振付時に水損が系統に持ち込まれていることが明らかとなっており、今回のFHМ
振付にあたっては、リンク機構等の狭隘な部分の酸化Naの除去と、より乾燥度を上
げるため燃焼機器洗浄槽で振付直前に洗浄・乾燥運転を実施した。しかし、その効果は
得られなかったようである。このことからFHМの洗浄時、特に水洗浄洗浄において
ロッド内部が負圧になり運転中は洗浄槽が正圧になることによりロッド内外の圧力差
により槽内の水損がロッド内部に浸入し、乾燥運転においてもFHМは60〜80℃程度にし
かならないため、ロッド内に浸入した水損がほとんど抜けずに残留したままになったも
のと思われる。

これまでにあった二つの事象の概要を以下に示す。
① 振付時のカバーガス中水素濃度の上昇
　H5年8月の振付及び今回の振付時にFHМを炉上部に振付した直後あたりからカバーガス中に
　水素濃度が急上昇し、1日後に正常値に戻る現象が生じていることが、カバーガス分析装置
　により明らかとなっていた。また、H6年11月に炉内流量分布測定の
　ために流量計測装置（外観はほぼFHМと同じ形状寸法でグリッパの代わりに流量計が
　取り付けてある）を振付した際も同様な現象があった。
② FHМ取り外し後の外観点検時におけるブリッジ生成事象の確認
　H5年11月に内側燃料装荷を終え、炉内流量分布計測のためFHМを取り外したが、
　FHМを燃焼機器洗浄槽に収納し、付着Naを洗浄する前にFHМ本体へのNa付着状
　況をビニールバッグで覆った状態でメンテナンススケーブルで吊り上げて、目視確認を行
　ったところ、炉内へ振付た際に液面となる部分の本体内部に厚さ約5cmのNaのプレー
　トが確認された。ブレートは荒い结晶（水酸化物？）がポーラス化に固まっているよう
　に見えた。このようなブレートは、炉物理試験後に取り外したFHМ（H6年9月）、そ
　して炉内流量分布試験後にH6年11月においても観察された。
これらのことから、FHM及び流量計測装置を燃焼機器洗浄槽で洗浄した際に、FHM等に水分が残留したものと推定される。

更に平成6年度点検において、FHMの分解点検を行ったところ、前述のとおり爪開閉ロッド等に水の存在が確認されている。

感知ロッドの動作不良は感知ロッド等の内部に残留した水が、炉内に挿入された際に、約200℃に加熱されることによりカバーガス中に噴出し、水-Na反応が生じることにより二酸化塩素に水酸化物が生成し、固着したものと推定される。この水-Na反応によりカバーガス中の水素濃度が上昇するとともに本体内部の液面近傍にNa水酸化物のプレートが生成したものと推定される。

第3.2-4図に燃料交換装置Na洗浄前Na付着状況を示す。

(5) 炉内中継装置回転ラック旋回不具合（H6年4月）

炉内中継装置は燃料交換時に燃料出入設備と燃料交換装置との間で新燃料及び使用済燃料の受渡しをするもので、左右の二つのラックを旋回させて、それぞれの設備に受渡しを行う。

燃料荷運動中に新燃料を燃料出入設備からIVTMの左ラックに受け取り、燃料交換装置との取り合い位置へ旋回中に停止した。IVTMはギヤボックスを介して、ラックの旋回角度が現場で確認できるようにインデックスハンドルが設置されているが、ギヤボックスに固定されている歯車固定ピンが外れ可動するインデックスハンドル部を押し上げ、駆動抵抗の増加により回転速度が低下して所定の時間を超過したため自動停止した。歯車固定ピンが外れた原因は、駆動装置を製作して約5年経過しており、インデックスハンドル内部に埃等が浸入し徐々に固定歯車とピ))==歯車との間の摺動抵抗が増し、歯車固定ピンに力がかかり、ピンに変形を生じさせたものと推定される。

対策としては、歯車固定ピンの径を太くして多少の摺動抵抗の増加に対して変形が生じないようにした。なお、インデックスハンドルは新品に交換し、防塵カバーを取り付けた。

第3.2-5図に炉内中継装置 回転ラック駆動装置説明図、第3.2-6図にインデックスハンドル構造図、第3.2-7図にインデックスハンドルを示す。
△ Na洗浄前Na付着状況（液面近傍）

△ 円筒胴の内面（中のパイプは開閉軸）

第3.2-4 図 燃料交換装置Na洗浄前Na付着状況（液面近傍）
第3.2-5 図 炉内中継装置 回転ラック駆動装置 説明図
第3.2-6 図 インデックスハンドル構造図
第3.2-7 図 インデックスハンドル
-137-
（6）炉内から取り出した後のナトリウム付着状況（平成6年9月）

SKSにおいて、FHM、IVTM及びナトリウム透視装置（USV）について確認しているが、燃料装荷でFHM及びIVTMを使用したことから取り出し時に外部を目視確認した。FHMの円筒部及びグリッパには、SKS後に観察した時は表面に黒っぽい汚れのようなものが付着していたが、内側炉心燃料装荷後及び出力試験終了後に観察したところ表面には、ほとんどNaの付着はなかった。

SKS終了後に取り出した際、本体下端の平板にNa溜まりがあった。グリッパのドレン抜き対策に比べ、本体への配慮が足りなかったようで、下端の平板、ガイド部上端に水平部があり残留Naが確認されていた。そこで、内側炉心装荷後に取り出した際、下端の平板の中央にドレン穴を設けたものと交換したところ、ドレン穴が有効に働いていたことが確認できた。なお、IVTMについては、ほとんどNaの付着はなかった。

第3.2-8 図に燃料交換装置グリッパのナトリウム付着状況を示す。
第3.2-9 図に炉内中継装置Na洗浄前Na付着状況を示す。

（7）FHM本体分解点検（平成6年10月）

バスタグラフ、下部及び中間ハウジング、バスタグラフ開閉軸、爪開閉軸等の分解を行った。特にバスタグラフ開閉軸は内部に感知軸を内包する二重構造となっており、外側燃料装荷前に炉内に挿入した際に、感知ロッドの動作不良を生じたことから、二重間の洗浄状況、外観等について入念に確認した。確認の結果、軸が長い顶部でネジ込みにより繋がっているが、そのネジ込み部から軸の内部（中空軸）に水が浸入していることが確認された。そこで浸入しても抜けるよう水抜き穴を軸の下端付近に開ける対策をとった。また、上部ハウジングにはバスタ開閉軸等が上下するストロークを吸収するとともに炉上部のババーガスパウンドリを確保するためのペローズがあるが、上部ハウジングの内面にも残留水が確認され、この部分の乾燥が十分でないことが分かった。対策として軸の曲がりを中間で抑えている中間フランジに水抜き穴を設けるとともに燃焼器洗浄槽で洗浄・乾燥後、取り出したバスタ開閉軸下端から圧縮空気を二重管部に流して二重管部を乾燥し、二重管部の上端から圧縮空気を上部ハウジングに流出させ、上部ハウジング内を下降させてハウジング内も乾燥を十分行えるようにした。
第3.2-8 図 燃料交換装置グリッパのナトリウム付着状態
△ Na洗浄前Na付着状況（回転ラック部）

△ Na洗浄後

第3.2-9 図 炉内中継装置Na洗浄前Na付着状況
組立後、動作確認を行った。分解前とほぼ同程度の動作トルクであったが、爪開閉トルクについては、S K Sの段階から開閉の中間でトルクが高くなる山なりの傾向が現れていたが、今回の点検では改善が図られなかった。

(8) IV TMドアバルブ開孔点検（平成6年12月）

S K S、燃料装荷等で約300体の燃料交換を行っているが、これは約1.5燃交分に相当する。今後、本格的に原子炉を運転することから、シール材の磨耗、雰囲気劣化を考慮し、ドアバルブを開孔し内部のN a付着状況の確認とOリング交換を実施した。内部にはほとんどN aの付着は見られなかったことから、燃交時、使用済燃料を移送ボットに入れて燃料出入機に収納する際の滴下が十分に行えているものと推察される。

(9) F HM駆動部点検（平成7年4～8月）

① 駆動部点検

平成6年度点検結果から、F HM本体駆動部の点検が必要との結論に達し4月から8月にかけて工場に持ち帰り分解点検を行った。爪開閉トルクが高くなった原因は、軸が昇降する際にベローズ保護のために軸の回転を防止するガイドを設けているが取扱回数の増加とともにガイド溝に傷が生じていた。また、爪開閉アームの長穴に擦れが確認されたことから、詳細に穴の寸法測定を行ったところ、若干、公差が狭く製作されていることが判った。これらの要因が相互に作用して、摩擦抵抗が増加したものと推定される。そこで、ガイドとキーの接触をこれまでの線接触から面接触になるよう形状を変更し、アームの長穴についても変更をフラットにした。組立後の作動確認の結果、ほぼ平坦なトルクに回復した。

第3.2-10図に爪開閉軸の回転防止機構説明図を示す。

② ロッド内水分浸入防止対策

H 6年度点検において爪開閉ロッド内部に水分が残留していることが明らかとなり水抜き穴を追加したが、根本的な対策として水分が浸入しない構造のロッドに取り替えることとし、爪開閉ロッド及び感知ロッドについて取り替えを実施した。

第3.2-11図に点検箇所詳細図(1/3～3/3)、第3.2-12図に構造変更説明図を示す。
第3.2-10図 爪開閉軸の回転防止機構説明図
3.3 燃料出入設備

3.3.1 燃料出入設備の運転実績

燃料出入設備は原子炉運転中に新炉心構成要素（新燃料等）を炉外燃料貯蔵槽（EVST）へ移送するとともに、EVSTから使用済炉心構成要素を燃料池へ取り出すための移送運転を行う。また、原子炉停止した後の燃料交換においてEVSTと炉内に設置した燃料交換設備との間での新燃料と使用済燃料との移送運転を行う。従って、燃料出入設備は点検時を除きほぼ年間を通してフル稼働する設備である。

燃料出入設備は、平成4年9月からEVSTへの新燃料の移送を開始し、平成5年8月までに136体移送した。9月に燃料装荷試験運動で模擬燃料体約20体の取扱を行い、10月12日に中性子源2体、13日から11月3日まで内側炉心燃料108体の移送を行った。その後も新燃料の移送を行いうなが平成6年1月28日から外側燃料の装荷を実施し、4月5日に168体で初動界を達成し、5月20日198体の初期炉心構成を完了した。その後、出力分布試験のために試験用集合体約60体を炉心とEVST及び燃料検査槽との間で移送運転した。

出力分布試験後、燃料装荷で炉心からEVSTへ取り出した模擬体のうち4体を洗浄し、平成7年2月にも模擬体50体を洗浄処理して燃料池へ移送した。4月には次の燃料交換に備えて制御棒19体をEVSTへ移送し、EVSTのドアバルブ6連化工事が終了した後、8月から11月にかけて模擬体144体の洗浄処理運動で使用した。

11月下旬にEVSTへ新燃料24体を移送した。

3.3.2 燃料出入設備の保守実績

<table>
<thead>
<tr>
<th>年度</th>
<th>部品</th>
<th>検査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成4年度</td>
<td>本体Aグリッパ、グリッパ駆動装置</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>本体Aドアバルブ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>本体Aコフィン、可動ブロック</td>
<td>開放点検</td>
</tr>
<tr>
<td></td>
<td>走行台車駆動部</td>
<td>簡易点検</td>
</tr>
<tr>
<td></td>
<td>冷却装置本体A直接冷却系出入口弁(2台)</td>
<td>分解点検</td>
</tr>
<tr>
<td>平成5年度</td>
<td>本体Bグリッパ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>本体Bドアバルブ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>本体Aグリッパ、グリッパ駆動装置</td>
<td>分解点検</td>
</tr>
</tbody>
</table>
冷却装置 電動弁，空気操作弁（9台） 分解点検
本体B直接冷却系弁（1台） 分解点検
走行台車絞電装置

・平成6年度
本体Aグリッパ，グリッパ駆動装置 分解点検
本体Aドアバブルプ 分解点検
本体Aコンファ，可動ブロック 開放点検

・平成7年度
本体Aグリッパ，グリッパ駆動装置 分解点検
本体Aドアバブルプ 分解点検
本体Aコンファ，可動ブロック 開放点検

3.3.3 燃料出入設備の運転，保守における特記事項
（1）H4年度点検（H4年8月）

TKS, SKSでの使用実績が多くかった（約230体）ことと引き続いて次年度の燃料装荷のためにETSへの新燃料移送で使用することから本体Aについて分解点検を実施した。点検結果は概ね良好であったが、グリッパのテーブ固定金具を分解時にテーブ固定ボルトが破損（8本中1本）していた。原因はグリッパ洗浄時のNa水反応によるアルカリ脆化により破損したものと推定される。対策としてボルトの材質を高張力鋼からインコネル718に変更した。

第3.3-1図にテーブ固定ボルト破損状況を示す。

グリッパ昇降テーブの固定部付近にボンチ傷があったことから、念のため一式新品に交換した。

また、グリッパ駆動装置の点検復旧後の作動試験において、グリッパ昇降動作を行ったところ グリッパ上上限の警報が復帰しない事象が生じた。上限バックアップ装置を取り外して調査したところ、リミットスイッチの摺動部に酸化Naが付着しリミットスイッチが押し込まれた状態のままとなっていた。リミットスイッチを新品に交換するとともに今後の対策として次回点検時に、Naペーパの付着予防のためカバーを取り付けることとした。
＜破損状況＞
(2) 改良型ドリップパンの製作（平成5年2月～3月）

本体Aドリップパンを洗浄する際に、EVSトでドリップパン内のNaのドレン抜きを行うが、当初製作して納入されている10体のドリップパンには約250ccのNaが残留することがSKSの結果から明らかになっており、ドリップパンの洗浄性及び乾燥の上から残留Naの低減化が課題となっていた。

その対策として底面形状の変更についての提案があり、種々の形状について検討し、形状を模擬して水によるサイフォン試験を実施して残留水の測定を実施した。

試験の結果、残留水の最少は約65ccで、底部外周に傾斜した溝を設けた形状のものであったが、製作に放電加工を必要とすることからコスト高となる。このため製作性を考慮して残留水が約95ccだった底部外周に溝を設けた形状のものを採用することとし4体製作した。今回の製作の際に合わせてハンドリングヘッドのリングの補強を行うこととし、3本の支柱を6本にした。これにより残留Naは従来の約1/3に低下され、洗浄性等の向上が図られた。サイフォン試験結果を次表に示す。

サイフォン試験結果

<table>
<thead>
<tr>
<th>底部の形状</th>
<th>平均残留水量</th>
<th>理論残留水量</th>
</tr>
</thead>
<tbody>
<tr>
<td>現状の形状</td>
<td>約255</td>
<td>約290</td>
</tr>
<tr>
<td>底部外周に溝を設けた形状</td>
<td>約95</td>
<td>約115</td>
</tr>
<tr>
<td>底部外周に傾斜した溝を設けた形状</td>
<td>約60</td>
<td>約70</td>
</tr>
</tbody>
</table>

この他にも底部の形状を①底部斜面の角度を変えた物 ②孔部のみに窪みを設けた物 ③底部中央を低くした物で試験を行った。

第3.3-2図に従来型とサイフォン機能向上型ドリップパン比較図を示す。
第3.3-2 図 従来型とサイフォン機能向上型ドリップパン比較図

従来型DP（製品前）（残留水量：約250cc）

サイフォン機能向上型DP（製品後）（残留水量：約100cc）
(3) ドリップパンのサイフォン機能向上試験（平成5年4月）

改良型ドリップパンの製作時に、更に残留水量を低減できるドリップパンの底部形状
について検討したが納期の関係で試験はできなかったことから、更なる残留水の低減に
向け引き続いて試験を実施した。

試験の結果、いずれも本体A改良型ドリップパンに採用したものより残留水量が更に
少ない結果が得られた。特に「サイフォン孔部に縦穴を設け周間に傾斜を付ける形状」
が残留水量が最少で約50ccだった。これはサイフォンが切れた時のサイフォン通路の
容量であり、この量以下にはならないものと思われる。但し、この値のドリップパン形
状にするには、製作時の加工に手間がかかる（コスト高）。

製作性を損なわない範囲で残留水が約63ccと低減効果が大きかった「底部外周に浅
い溝を設けた形状」を今後製作する場合は採用すべきである。

なお、出力分布試験時に交換が必要となる燃料検査槽ドリップパンの交換用を製作す
ることとなり、交換用の検査槽ドリップパンにサイフォン機能を向上させた底部形状を
採用した。

第3.3-3 図に底部に浅い溝を設けた形状、第3.3-4 図にサイフォン孔部に縦穴を設け
周間に傾斜を付けた形状を示す。

サイフォン機能向上試験結果

<table>
<thead>
<tr>
<th>底部の形状</th>
<th>平均残留水量</th>
<th>理論残留水量</th>
</tr>
</thead>
<tbody>
<tr>
<td>底部外周に浅い溝を設けた形状</td>
<td>約 63</td>
<td>約 95</td>
</tr>
<tr>
<td>サイフォン孔部に縦穴を設け周間に傾斜を付けた形状</td>
<td>約 47</td>
<td>約 50</td>
</tr>
<tr>
<td>サイフォン孔部を最も低くした斜面形状</td>
<td>約 51</td>
<td>約 65</td>
</tr>
</tbody>
</table>
第3.3-3 図 底部に浅い溝を設けた形状
サイフォン孔部に縦穴を設け両周に傾斜を付けた形状
（4）走行台車走行積算距離計設置（H5年4月）

走行台車のメンテナンスの定量的な目安を知ることとPRの目的で、走行距離メータを設置した。燃料出力設備の運転で走行ストロークを測定して、床設備の取り合い位置を検知しているが、その走行ストロークを積算する装置を追加した。

設置してからH8年3月末までの走行距離は約58Kmおよび、この間、燃料装荷開始～初臨界まで（H5/10～H6/4）で約17Km、それ以降出力分布試験中（H6/4～9）に約17Km、模擬体処理を行った期間（H7/2～11）に約13Kmそれぞれ走行している。

（5）H5年度（燃料装荷前）点検（H5年5月）

H4年度点検以降、121体の新炉心構成要素をEVS1Tへ移送した。SKSにおけるNa中での取扱実績としては約50体だったことから、取扱体数の増加の影響確認と今後予定している燃料装荷を支障なく実施することを目的に本体Aの点検を行った。

点検結果は、使用状況が主にEVS1T移送だったことからグリッパの約半分しかNa中に浸漬しなかったため、駆動装置へのNaの付着量は少なかったが、ドアパルプについては、ケーシング内部に付着があり、特にグリッパ通過穴周辺に集中して付着していた。

前回点検時に発生したリミットスイッチ動作不良の対策として、カバーの取付を行うとともに予防保全のためリミットスイッチを交換した。

点検工程短縮のため点検機台に追加架台を取り付けた。これにより点検歩廊の取り外しがなくなり、4日短縮できた。

（6）燃料装荷中グリッパ下降動作停止（H5年11月）

11月2日の1体目の燃料装荷において、燃料出力機がEVS1T上で新燃料をつかむためグリッパを下降させたところ、ストローク約1000mmで「本体Aグリッパ昇降異常」（荷重低）警報が発生し、下降が停止して「燃料出力設備連動運転遅滞」となり自動化運転が除外となった。

状況を調査したところ、荷重値が通常の約半分の40Kg程度になっていた。その原因として考えられることは、グリッパを吊って昇降しているテーブに付着するナトリウムを
かき落とすためのスクリーピングがコクピット内の上部に設置されているが、これまで約130体ＥＶＳＴと炉心との間で取り扱っており、燃料装荷荷数の増加に伴いスクリーピング部に付着したＮａが増大し、一部固着してグリップ下降時のテーブ挙動抵抗を増加させたものと思われる。

コクピット上部ヒータ設定温度180℃を220℃にする変更して、手動でグリップを徐々に下降させ、下降が確認できたので燃料検査端に移動し、そこで下降、上昇操作を繰り返したところ、荷重値がほぼ通常の値に回復した。11月3日にも同様な事象が発生した。

今回の事象は燃料装荷時に前兆はあった。それは装荷中の燃料出し入れ設備の異常監視のため昇降トルクを仮設レコーダに記録しており、装荷体数の増加に伴いBVSTで新燃料をつかんでグリップを上昇した時に上限付近でトルク値が一時的に増大することが時々認められていた。また、10月16日（通算20体目）の1体目を開始した直後、グリップ昇降異常の警報が発報したことがある。（但し、グリップの下降は停止しなかった。）

BVSTへの新燃料移送時に発生しなかったのは、BVSTへ移送した際にグリップはＮａ中に浸るものの昇降テーブはレベル的にアルゴンガス中になるため、Ｎａが付着することなく、従ってスクリーピングへのＮａの付着もほとんどなかった。（H5年度点検時に目視確認済み）

一方、燃料装荷においては、炉内中継装置で燃料出し入れボットの受渡しを行うが、その時、テーブが約5mほどＮａ中に浸るためグリップを上昇した際に、テーブに付着したＮａはスクリーピングでかき落とされるが、今回の場合、スクリーピングに付着したＮａが固着し昇降時のグリップ等の荷重の関係（1体目の下降時のみ上限からグリップのみの荷重）から下降トルクが低下し停止したものと推定される。

11月3日に内側ルーム燃料装荷を終了したが、H6年1月から外側ルーム燃料装荷を予定しており、また、臨界後も引き続いて初期炉心構成、出力分布試験で燃料出し入れ設備はフル稼働になることから、外側ルーム燃料装荷前に点検を行うこととした。

第3.3-5図に燃料出し入れ設備、第3.3-6図に本体Ａグリップ駆動原理図、第3.3-7図に新燃料つかみ運転時本体Ａグリップ昇降トルク比較図、第3.3-8図に燃料交換時の本体ＡテーブNａ中浸漬ストローク、第3.3-9図にグリップ及び昇降テーブへのNａ付着状況、第3.3-10図にスクリーピングを示す。
第3.3-6 図 本体Aグリッパ駆動原理図

<table>
<thead>
<tr>
<th>動作</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>グリッパ上昇</td>
</tr>
<tr>
<td>[]</td>
<td>炉心構成要塞つかみ</td>
</tr>
</tbody>
</table>
第3.3-7 図 新燃料つかみ運転時本体Aグリッパ昇降トルク比較図
第3.3-8 図 燃料交換時の本体AテープNa中浸没ストローク

炉内中継装置

△EL49.225M
△EL48.435M
△EL43.0M
△EL34.5M
△EL34.185M

△EL48.435M
△EL43.0M
△EL33.05M
△EL27.05M
△ グリッパ、アダプタ組合せ状況（点検時）

△ グリッパ（Na付着状況）

△ 昇降テーブ（上爪用（左））

第3.3-9 図 グリッパ及びテーブへのNa付着状況
△ スクレーパ昇降駆動装置取付状態

△ スクレーパ（左）、スクレーパケーシング

第3.3-10図 スクレーパ
（7）本体Aグリッパ駆動装置点検（H5年12月）

本体Aグリッパ駆動装置について分解点検を実施した。点検の結果、スクリーブ部は予想していた以上に内部にNa（約360g）が詰まっていた。また、ケーシング内の下部にもかなりの量（約140g）のNaが堆積していた。これはスクリーブにNaが詰まり、機能低下が生じたため、駆動部内までNaが持ち込まれ、テープに付着したNaが、ドラムに巻き取られる時に押し出されるようにしてケーシング下部に滴下したものと思われる。第3.3-11図に対策前Na付着状況を示す。

Na付着状況から、その原因を検討すると①スクリーブ部の温度が低いことが考えられる。②スクリーブのNaドレン性が悪い。

そこで対策として①コフィン及び駆動装置接続フランジに放熱抑制のためのヒータを設置する。②Naドレン性向上を図ったスクリーブとする。改造を行った。

ヒータ追加においては、スクリーブの温度を確認できるよう、仮設の測温抵抗体を設けた。ヒータ電源投入前のスクリーブの温度を測定したところ、約50℃であった。このことから、スクリーブの温度が低かったことにより、スクリーブに揚げ落としたNaが付着、固化してスクリーブの機能を失わせてテープ昇降時の抵抗を上昇させてグリッパ下降停止に至ったことが明らかになった。

ヒータ設置によりスクリーブの温度をNaの融点に余裕をみて、110℃以上を確保することとし昇温試験を行ったところ、115℃となり付着したNaが固化することはない。

また、スクリーブについては、スクリーブ及びスクリーブケースにNaドレン用穴を設け、スクリーブケース上面に傾斜を設ける。また、スクリーブ上部にカバーを設置し駆動装置からの滴下Naがスクリーブに落下することなく、コフィン内に落ちるよう山形のカバーを取り付けた。

第3.3-12図にスクリーブ構造図、第3.3-13図にヒータ及び保温材の設置を示す。
△ スクレーパ部（H 5年度の対策前）

△ 駆動装置内面（H 5年度の対策前）

第3.3-11図 対策前Na付着状況
第3.3-12図 スクレーパ構造図

改善前

改善後
図2 ヒータ及び保温材の設置（改前前）

第3.3-13図 ヒータ及び保温材の設置（改善後）
(8) H5年度点検下期分（H5年12月）

燃料出入機本体Bは、平成3年4月の据付後、SKS等で使用しており初期状態を確認することを目的に点検した。燃料装荷で燃料出入機を使用することから工程上、全分解はできないことから、駆動装置に比べ混分の影響が懸念されるドアバルブについて分解点検を実施した。ドアバルブはこれまでに約150回開閉を行っている。

点検の結果、セルフロック座等のステンレス鋼以外の材料の接触部に銃の発生が認められた。ドアバルブ内が湿度の高い空気雰囲気にあるため、温度変化で乾燥し銃を発生させたものである。但し、分解前の作動試験において、特に異常は認められていない。

(9) 本体AドリップパンのNa抜き不良（H6年2～5月）

本体Aドリップパンは、燃料等の移送に伴って滴下するNaを流れるもので設計上燃料移送ボトム取扱時は70体（35燃料分）、燃料処理運転で集合体を取扱う時は12体ごとに取り替えることとしている。取り替えたドリップパンは燃料交換または燃料処理運転が終了した段階でドリップパンをBVSTへ移送しNa中へ浸漬し引き上げる際にドリップパンに設けてあるサイフォンラインから内部のNaを抜いた後に共通保修設備燃焼機器洗浄槽に移送してNa洗浄を行った後、再使用することとしている。燃焼機器洗浄槽ではこれまでドリップパン（DP）を一つづつ洗浄することとしていたが、窪素ガス、蒸気、脱塩水等を使用することから一個の洗浄は無駄が多い。このため、3個を一度に洗浄できるように改造を実施し、複数体洗浄が可能であることが確認できたことから、燃料装荷以降は3個洗浄を行うこととした。

DPの3体洗浄に際し、EVSTでNaドレン抜き後、DP内に残留Na量を確認するためDPを燃焼機器洗浄槽に挿入する前にグリッパ交換装置でドレン状況を観察したところ、1個についてドレン抜きがほとんど行われていない状況が確認されたことから、ドレン抜きが確認できた2体について同時洗浄した。ドレン抜きができたかったDPはEVSTのNa（約200℃）中に約1ヶ月放置して取り出して見たところ、ドレン抜きが確認できた。

初期炉心構成を終了した後（5月）にも3個の内1個にドレン抜きが不良のものがあった。これについてもEVSTでドレン抜きを行ったが、有意なNaの排出が確認され
るまで4回にわたり、EVSTとグリッパ交換装置の間を往復し、2日かかってドレン抜きを確認し燃焼機器洗浄槽で洗浄した。

ドリップリング洗浄は、EVSTと検査槽との間で溶解返還を行った後、燃焼機器洗浄槽に移送して洗浄を行う設計となっているが、上述したような状況が確認されたことから今後のドリップリング洗浄においてもグリッパ交換装置で残留Na量を確認してから、燃焼機器洗浄槽に移送しないとドリップリング及び洗浄槽等の損傷事故を起こす可能性があり、ドレン抜き状態を確認しながらドリップリングのサイフォン管の改善等を検討する必要がある。

(10) 走行トルク高（H6年5月）

出力分布試験中に試験用集合体を移送中、走行トルク高の警報により燃料出入機の運転が停止した。CRTにより走行トルクの見たところ、トルク値がこれまでになく、変動しておおり、現場を確認しても干渉した形跡がないことからトルク検出器を調査したところ、検出器内部にカーボンプラッシュの粉が飛散している状況が確認された。そこで飛散した粉を掃除機により除去し、走行試験を行ったところ、トルク値は下がり異常なく走行した。しかしながら、燃料出入口設備は燃料設備の中でも最も稼働状況の厳しい機器であることから、再発防止対策として、トルク検出器を接触式から非接触式に変更することとし、H7年3月に非接触式への改造を実施した。

(11) グリッパ駆動装置軸シールの漏えい増加（H6年7月）

本体Aは、炉内接続時のブローアドダウン、ドアバルブ接続時のシール及び駆動装置軸シールのためにアルゴンガスを使用している。このアルゴンガスは燃料出入機に積載した3本のボンベにより供給しているが、出力分布試験で試験用集合体を炉内〜EVST〜検査槽間で移送運転時、燃料荷札時に比べてボンベの消費量が増加した。

調査した結果、駆動装置軸シールからの漏えいが増加していることが判明した。今回の事象は昨年の内側燃料荷札時にも発生し、12月の点検時に軸シールを取り替えた経緯があったが、再発したことから根本的な対策を検討する必要がある。

対策について検討したところ、昨年の点検において軸にシール材との接触跡（傷ほど
深くない）が確認されていた。それが直接漏えいに影響するものではないと判断しているが、長期的（傷になった場合）には影響を与えることから軸の軸シール部について、ハードクロムメッキを次回点検時に実施することとした。

なお、本体Bの軸シール部については、同様に空気ボンベによりシールガスを供給しているが、使用頻度が少ないことによるものか、現状は問題が生じていない。

（12）本体Aドアバルブ全閉不良（H 6年9月）

出力分布試験を終了した後から燃料出入機が開始されるまでの間に、燃料装荷で炉心からE V S Tへ取り出した模擬体をN a洗浄して燃料池への搬出を12体計画した。ところが、処理鉄板を開始して2日目（9/22）の2体目を燃料洗浄槽に受渡した後、本体Aドアバルブを閉としたが全開の信号が得られず、液滞タイマーで異常警報を発し燃料出入機の運転が停止した。

ドアバルブは、H 5年6月に点検した以降、燃料装荷、移送、炉物理試験等で約460体の燃料等の取扱に使用している。これは1年間の取扱数の約半年分であるが、炉心とE V S T間での取扱は約300体行っており、約1.5年分（3燃交分）に相当する。燃料交換運転の場合、炉内で燃料移送ボットの受渡しをする際に本体Aグリップテーブが約5mN a中に浸漬することから、グリップ上昇時に滴下するN aがドアバルブのケーシング内に付着し、取扱体数の増加とともに堆積量が増加して作動性能に悪影響を与えたものと想定されるが、12月の点検時に詳細に調査することとした。

（13）平成6年度設備点検（H 6年10月）

H 5年12月の本体Aグリップ駆動部点検において、スクリーバ部のN a固化防止対策として、グリップ駆動装置については接続部にヒータを追加し、また、スクリーバのドレン性向上を図る改造を実施したが、本体A分解点検に際して、その効果を確認した。

また、ドアバルブについては、先の模擬体搬出運転時に動作不良が発生したことからその原因を究明しることを重点に点検した。

点検の結果、スクリーバ部及び駆動装置ケーシング内ともほとんどN aの付着がなく改造の効果が確認できた。第3.3-14図にスクリーバ部及び駆動装置内面状況を示す。
△ スクレーパ部（点検前）

△ 駆動装置内面（点検前）

第3.3-14図 スクレーパ部及び駆動装置内面状況
ドアバルブについては、弁体上部とケーシング側面に多量のNa（約1.8 Kg）が確認された。弁体上部にケーシングとの隙間を埋めるように堆積し開閉時に干渉していた。特に弁体の先端部には閉止時にケーシングと接触しており、かつ、表面が酸化しているのが観察された。これらのことからドアバルブ閉動作不良の原因は、取扱体数の増加に伴って弁体上部への滴下、付着するNaが増加したため、弁体先端部から下に垂れ固化し、ケーシングと接触して押し潰されるようにして使用されていたが、弁体は予熱されていないことから、付着量の増大に伴い閉止トルクで固化Naを押し潰せなくなり全開出来なくなったものと推定される。第3.3-15図にドアバルブNa付着状況を示す。

弁体上の付着Naの増加は、スクレーパ部のドレン向上対策も少なからず影響（スクラーラ部のNaフリッジが向上したため、フロッパ部へのNa滴下量が増加した）していると思われることから、弁体上のNa付着低減対策は弁体だけでなく、スクレーパ部についても検討する必要がある。

点検期間の中でこの対策を検討、実施する期間を取りなかったことから、Naを除去して復旧した。幸い点検後の燃料出入設備の運転は、BVSTからの模擬体搬出及び新炉心構成要素のBVST移送運転も予定されていないことから、今回のように弁体上部及び先端部にNaが多量に付着して動作不良を起こす可能性はほとんどなく、次回の点検時に対策をとることとした。

駆動装置軸シール部の点検を行った結果、前回点検時と同様に軸にシール材との接触跡が確認された。またシール材が変形していた。シール材については新品に交換し、ドラム軸については工場に持ち帰りハードクロムメッキ処理を施すこととした。その結果、H7年2月以降から11月まで実施した模擬体搬出運転等で約200体取り扱ったが、アルゴンガスの消費量の増加は生じていない。

駆動軸ハードクロムメッキ処理範囲図
△ ドアバルブ（弁体端面のN a付着状況）

△ ドアバルブ（弁体上面のN a付着状況）

第3.3-15図 ドアバルブN a付着状況（1/2）
△ ドアバルブ（ケーシング内N a付着状況）

△ ドアバルブ（ケーシング内N a付着状況）

第3.3-15図 ドアバルブN a付着状況（2／2）
(14) 本体Aグリッパつかみ／はなし異常発生（H7年2月）
模擬体洗浄搬出において、2月11日の1体目、燃料洗浄設備で模擬体はなした後、上爪のテーブ調整運転の際、上爪はなし時に爪開閉トルク高が発生し、運転が除外停止となった。その後も発生したことからテーブ調整運転を自動化から削除し、手動対応とした。これからのことから燃料洗浄槽の燃料出入機本体Aとの接続時の膨溝が十分にできていないことが懸念される。

(15) 本体Aグリッパつかみ／はなし異常発生（H7年9月）
3月～7月までEVST6期化工事のため模擬体搬出運転を中断していたが、8月7日から再開したが、9月6日から燃料洗浄設備で模擬体をはなす際に、本体Aグリッパつかみ／はなし異常の警報が頻発するようになった。原因は、今回模擬体搬出運転前に燃料洗浄設備の脱気運転を改善する対策を取ったが、まだ十分ではなく約60体を終えた頃に発生したものと推定される。そこでEVSTのNα中（200℃）に浸せん付着する不純物が溶解しづかみ／はなしトルクの低下が見られるのではないかと考え、EVSTに浸した後、動作確認を実施したところ、かえってトルクの上昇がみられた。このため燃料検査槽でArガス中における爪のつかみ／はなし運転を繰り返したところ支障なく動作するようになった。

本体Aグリッパつかみ／はなし異常発生の原因調査の一つとして、グリッパ交換装置でグリッパ部の外観を目視したところ、表面に付着したNαが白色化しており、グリッパとアダプタの接続部はNαの固まりが付着し、表面には水酸化物の膜が確認されたことから、200℃程度の温度では付着したNαは溶融しないものと思われる。また、グリッパとアダプタを切り離してトルク上昇の原因を探ろうとしたが切離しかつ出来なかった。アダプタ内部にもNαの固まりが付着して切離しを妨げているものと思われる。

以後の模擬体の処理工事を考慮し、グリッパを燃焼機器洗浄槽で洗浄した。その結果爪開閉トルクは正常値に戻り、アダプタの切離しも可能となった。
(16) 本体Bグリッパ爪損傷（H7年8月）

本体Bは洗浄後の燃料等を燃料池に移送することから取扱中に燃料等やグリッパから水が滴下する。それを受けるためのドリップパンがドアパルプに設けられており、取扱体数12体でドリップパンの水抜きを行うよう計画されている。

模擬体処理運転時の滴下量を確認するため本体Bを原子炉補助建物とメンテナンス・廃棄物処理建物間に移動、停止してグリッパによりドリップパンをドアパルプから取り出して重量計により滴下水量を確認した。その後、グリッパでドリップパンをつかみ、上昇させたところドアパルプ下端手前で低速上昇から高速上昇に切り替わり、この際に生じたグリッパの振れにより、上昇中にドアパルプとドリップパンが接触して本体Bグリッパ昇降異常で停止した。

グリッパを下降して調査したところ、3本の爪のうち1本が変形して2本吊りの状態になっていた。動作状態を確認したところ問題はなかったため翌日の模擬体処理運転は実施した。しかし、長期的な使用に際しては、不具合要因となる可能性が有することから、変形が確認された爪1本と念のために残り2本の爪について、予備品と交換した。

再発防止対策として、滴下量確認後、グリッパでドリップパンをつかみ上昇する際は、ドリップパンが本体B内に収納され、コフィンでガイドされるまでは約300mmづつ低速上昇を繰り返して行うこととした。

(17) 平成7年度設備点検（H7年12月〜H8年3月）

模擬体処理運転での使用実績が多かった（約200体）こと、当初の工事ではH8年4月に燃料交換が計画されており、H7年に発生したドアパルプ全閉不可の再発防止対策を実施することを目的に分解点検を実施した。

また、点検用足場の架設について、これまで点検の都度に足場用資材の搬入、組立、養生及び解体、放射線サービス、搬出を実施していたが、この方法は、架設作業に時間をかかることを避けるため出入機点検用の足場を新設したい旨メーカーから提案があり、今後の点検工程の短縮化の為に実施することとした。本体A廃りの足場設置は、今回の本体A点検時に合わせて実施し、本体B廃りについては、H8年度点検で実施予定の本体B点検時に実施予定である。今回実施したことにより、点検用足場の架設、解体でこれまでの日
数に比べ約5日短縮できる見通しを得た。

分解の結果、昇降駆動装置の駆動軸シール材のリップに変形が見られた。H6年度の運転中にも数々「シールガス漏れい」の警報が出てH6年度点検で新品に交換したが、H5年度点検時にも変形があったことから、今回は点検時にリップの形状を変更した改良品に交換することを計画し、工場で確認試験を実施してきた。その結果、改善が確認されたことから、改良品に交換した。

ドアパルプ全閉不可対策として、スクレーパ部の形状変更及びドアパルプ弁体のドリップパン受ヒータの改善を行った。スクレーパ部はテープ巻取ドラムから滴下するＮａが極力コンフィン内壁を伝って流れ落ちないようドレンガイドを追加してＮａを中心に集めグリッパを伝ってドリップパンに落ちるようにした。また、ドリップパン受ヒータについては弁体上部のテープ部の温度が低くて付着Ｎａが固化しドリップパンに流れ落ちないで溜まったものと思われることから、ヒータの施工範囲をテープ部まで実施しテープ部の温度を上げて滴下Ｎａが固化することなくドリップパンに流れ落ちるように改良を図った。第3.3-16図に駆動軸シールリップ形状比較図、第3.3-17図にナトリウム滴下状態図（現状）、第3.3-18図にナトリウム滴下対策構造図を示す。

<table>
<thead>
<tr>
<th>A: 従来品</th>
<th>B: 改良品</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

尺寸法は、従来品と改良品における相違方法を示す。

第3.3-16図 駆動軸シールリップ形状比較図
3. 4 炉外燃料貯蔵設備
3.4.1 炉外燃料貯蔵設備の運転実績

炉外燃料貯蔵設備は、炉心へ装荷する燃料等及び炉心から取り出した使用済燃料等をナトリウム中で中総・冷却貯蔵するもので炉外燃料貯蔵槽、残留熱除去のための冷却系及び貯蔵槽内のNα液位と純度保持のための補助系等から構成されている。

炉外燃料貯蔵槽は、平成4年9月から新燃料の受入、貯蔵を開始し、平成5年8月までに136体を受け入れた。9月に燃料装荷再調運転、10月12日から11月3日まで内側炉心燃料装荷で108体の移送、その後、外側炉心燃料を受け入れるとともに1月28日から外側燃料装荷運転を行い、5月20日198体の移送を行って初期炉心構成を完了した。

その後、出力分布試験で試験用集合体の炉心及び燃料検査槽への移送に使用した。

出力分布試験後、燃料装荷で炉心から取り出した模擬体のうち4体を洗浄した。平成7年2月にも模擬体50体を洗浄処理のため搬出した。4月に次の燃料交換に備えて制御棒19体を受入れた後、ドアバルブの6連化工事を開始し、7月に工事を完了した。

これまで型式ドアバルブを使用してきたが、延べ1271体の燃料等の受入れ、取出しを行い、各列案内筒間を29回に渡り移設した。

7月末にプランケット燃料34体を受入れ、8月から11月にかけて模擬体の洗浄処理のために144体を取り出した。11月下旬には新燃料24体を受け入れた。

冷却系及び補助系等は、S&K Sに合格後して運転を行っている。特に冷却系については、使用済燃料が入っていないことから3ループのラインにそれぞれ設置されている加熱器により予熱運転を行っている。

3.4.2 炉外燃料貯蔵設備の保守実績

<table>
<thead>
<tr>
<th>年度</th>
<th>装置名</th>
<th>検査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成4年</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>回転ラック駆動装置</td>
<td>漏えい確認</td>
</tr>
<tr>
<td></td>
<td>冷却系空気冷却器A</td>
<td>開放点検</td>
</tr>
<tr>
<td></td>
<td>冷却系外気取入フィルタA, B, C</td>
<td>開放点検</td>
</tr>
<tr>
<td></td>
<td>1次補助Nα系窒素ガス循環ブワA</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>ドアバルブガス置換系真空ポンプ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>ドアバルブガス置換系圧力計元弐（8台）</td>
<td>分解点検</td>
</tr>
<tr>
<td>年度</td>
<td>設備名</td>
<td>検査内容</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>平成5年度</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>DPD真空ポンプ(2台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>エクステンション弁(56台)</td>
<td>作動確認</td>
</tr>
<tr>
<td></td>
<td>冷却系空気冷却器A</td>
<td>開放点検</td>
</tr>
<tr>
<td></td>
<td>1次補助N系窒素ガス循環プレスA</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>Dアバルブガス置換系真空ポンプ</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>Dアバルブガス置換系</td>
<td>電動弁, 電磁弁, 空操弁(26台)</td>
</tr>
<tr>
<td></td>
<td>1次アルゴンガス系圧力調整弁(2台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>予熱ヒータ, 接点式N系漏えい検出器</td>
<td>絶縁抵抗測定, 導通確認</td>
</tr>
<tr>
<td></td>
<td>Dアバルブガス置換系地下台車可動案内筒排気弁</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>DPD真空ポンプ(2台)</td>
<td>交換</td>
</tr>
<tr>
<td></td>
<td>回転ラック駆動装置軸部</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>DPD真空ポンプ(14台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>予熱ヒータ, 接点式N系漏えい検出器</td>
<td>絶縁抵抗測定, 導通確認</td>
</tr>
<tr>
<td></td>
<td>冷却系1次・2次補助N系電磁ポンプ(5台)</td>
<td>性能確認</td>
</tr>
<tr>
<td></td>
<td>冷却系1次・2次補助N系電磁ポンプ 冷却ファン(5台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>Dアバルブガス置換系床Dアバルブ 用電磁弁(2台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>Dアバルブガス置換系フィルタ差圧計</td>
<td>交換</td>
</tr>
<tr>
<td>平成7年度</td>
<td>プラグ取扱機</td>
<td>簡易点検</td>
</tr>
<tr>
<td></td>
<td>DPD真空ポンプ(A系14台)</td>
<td>分解点検</td>
</tr>
<tr>
<td></td>
<td>冷却系空気冷却器出口ダンパ(3台)</td>
<td>リミット調整</td>
</tr>
</tbody>
</table>

3.4.3 炉外燃料貯蔵設備の運転、保守における特記事項

（1）平成4年度点検（H4年8月）

EVSTドアバルブはEVSTのカバーガスバウンドリを構成するとともに燃料出入機本体が貯蔵ラックの燃料または燃料移送ポットを取り扱う場合に燃料出入機と接続するものである。1個のドアバルブを6個ある案内筒に設置して使用する。TKS、SKSを
通して約 300 回の開閉を行ったことから、内部への N a の付着状況を確認するため分解点検を実施した。内部には比較的多く N a が付着していた。

回転ラック軸封装置は軸の摺動部からのカバーガスの漏えいを防止するため、X リングが三段構造になっておりリング間にはアルゴンガスで背圧をかけている。これまでの使用実績による磨耗状況の確認のため軸封部の漏えい試験を行った。その結果、判定値を十分に満足しており、漏えいに影響を与えるほどの磨耗は生じていない。

空気冷却器は使用済燃料の崩壊熱を除去するためのものであることからこれまでほとんど使用していない。しかし、将来、使用済燃料が取り出された場合には、3 ループあるがほぼフル稼働になる。空気取り入れ口が海岸に面していることから塩分の影響が懸念された。そこで初期状態を確認しておく目的で A 号機について開放点検を行い、伝熱管部の外観状況を確認した。その際、点検孔蓋の取り外しにおいて取付ボルトが外れなくて破損した。原因は予熱運転で約 240 ℃まで昇温するため、ネジ部が焼き付けを起こしたものと推定される。新品のボルトに換え、焼付け防止剤（ミリト 1000）を塗布した。

（2）ドアバルブガス置換系真空ポンプオイルー油面減少（H 4 年10月）

ドアバルブガス置換系は燃料 Conservation 設備が N a を内包すること及び放射性ガスを内包する可能性があることから、EVST 等の床設備と接続する際並びに切離しを行う際にドアバルブ間をガス置換するための設備である。

真空ポンプは 8 月に分解点検を行った後、EVST の新燃料移送運転で使用していたが週例点検においてオイルの油面が低下しているのが確認された。何回か補給したが状況に変化がないことから、再度分解しオイルシールを新品に交換した。しばらく異常なく運転していたが、H 5 年1 月頃再度油面の低下が確認されたことから対策が必要になった。幸い油面低下があっても真空ポンプの性能低下はなかったこととオイルが外部に漏えいすることがなかったことから、そのままの状態で運転を継続し次回点検時に対策を取ることとした。

（3）平成 5 年度点検（燃料装荷前点検）（H 5 年6月）

① EVST ドアバルブは新燃料の受入れで112 回開閉し、今後燃料装荷で約 400 回の開閉が予定されていることから分解点検を行った。昨年の点検以降新燃料の受入れにしか使用
しなかったことから、内面へのN a の付着はわずかであった。
(2) ドアパルブガス置換系真空ポンプオイラー液面低下の対策を実施した。前回の点検時
に内側オイルシールに亀裂が見られたことよりそこから油がポンプ内に吸い込まれて液
面が低下したものと思われる。内側オイルシールに亀裂が生じた要因は、アルゴンガス
を排気する際に圧縮熱が空気の時に比べ高温になるため、ロータシャフトが加熱されて
これに接触するオイルシールの潤滑性と耐熱性が損なわれ摩擦抵抗が増加して亀裂に至
ったものと推定された。そこで対策として接触面積を小さくしたオイルシールに変更す
るとともにオイルシールへの潤滑方式をオイルリー式から内部オイル給油式にすることと
しオイラーを取り外した。また、同型式の真空ポンプを使用している燃料検査設備真空
ポンプについても同様な対策を実施した。
(3) 冷却系空気冷却器Bの開放点検を行ったが、昨年実施したAと同様に点検孔蓋取付ボ
ルトを取り外す際に折損したことから同様に焼付防止剤を塗布して復旧した。

(4) 配管支持用オイルスナバからの油漏れ（H 6年6月）
炉外燃料貯蔵設備の月例点検において冷却系配管の支持構造物として使用しているオ
イルスナバのリザーバタンクとリード管との接続部からわずかに油漏れしているのを発
見した。接続部の増し締めを行ったが、漏えいを止めることは出来なかった。他のオイ
ルスナバについても同事象が考えられることから、全数について調査した。全数128 体
の内、高所の5体を除く123体について行った。その結果、14体について漏えいが確認
された。油漏れがあったオイルスナバは、全てリザーバタンクと本体がリード管で接続
されたもので、その接続部から漏えいしていた。油漏れの原因は、冷却系配管の熱変位
により接続部に緩みが生じたものと推定される。取り合えず増し締めを行った。

(5) 差圧式ナトリウム漏えい検出装置フィルタ交換頻度の増加（H 6年8月）
差圧式ナトリウム漏えい検出装置は、BVSTのN a 配管からの漏えいを検知するために
設置されており、配管と保温材の間にステンレス製の板を巻いて空間を設け、その間の
空気（酸素）をフィルタを通して真空ポンプで引ぎ、フィルタの差圧の上昇によりN a
漏れを検知する。設置されているのは、冷却系配管がある空気雰囲気とBVSTの液位等を維持する一次補助系配管がある雰囲気雰囲気に大きく分けられる。以前から約1ヶ月で交換差圧約1650mmAgになることから、全数交換していたが雰囲気雰囲気のほどんど上昇しないことから空気雰囲気の方がへても上昇しないことから空気雰囲気の方について1ヶ月毎に交換していたが、約2週間で交換差圧に達した。フィルタの付着物を分折したところNa漏れはなかった。しかし、急激に上昇したことから現場を調査したところ保温カバーの汚れが確認された。汚れの要因を調査したところ空調換気系給気口が非常に汚れていた。それら差圧式ナトリウム漏れ検出装置の戻り配管排気口が同部屋にあり、排気口付近に黒い粉が確認された。また、別の機会にオイルスナパの油量をチェックしたところ油面が低下しており補給しても低下する事象があったことから、これらが相互に作用して差圧上昇を増加させたものと思われる。取り合えずヒート交換表面の清掃を実施した。オイルスナパについては別途点検することとした。なお、戻り配管及び空調換気系について抜本的対策が必要である。

(6) 平成6年度点検（H6年11月〜7年3月）

① EVST回転ラック軸封部分点検

EVST回転ラックは設付後、約4年（製造後6年）経過しており、この間約1000体分の取扱実績がある。これは軸封部のXリングのメーカ推奨の点検頻度である5年分の運転実績に相当することから軸封部の分解点検を実施した。取り外したXリングは外観上異常なく、硬さ、引張強度、伸び等の物性の低下もほとんどないことことが確認された。このことからXリングの次回点検は6定検後に実施しても問題ないと思われる。

軸封部を取り外すとメンテナスリングが露出するが表面に薄くNaペーパが付着していた。メンテナスリングはXリングの点検の際に軸受けを取り外すことから回転ラックの荷重を軸受けに代えて受けるとともにXリングに代わってカバーガスのバウンドリも構成する。通常は下側XリングがバウンドリとなっていることからNaペーパは上昇するがペーパの上昇を抑制するため、シャープラグ下端の軸の貫通部にはペーパ上昇抑制板が取り付けられている。次回点検時に付着状況の変化を確認する必要がある。

② DP D真空ポンプ分解点検

差圧式ナトリウム漏れ検出装置の真空ポンプの分解点検を行った。I4の検出ライン
から構成されており、各ラインに2台の真空ポンプがあり交互運転を行っている。SK
Sにおいて系統にNaを受け入れて以降、ほとんど連続的に監視しており運転開始から
約3年経過した。昨年、空気雰囲気系、窒素雰囲気系各1台についてサンプリング的に
分解点検したが、この1年間に2台のポンプ停止があったことから半数について分解点
検した。点検の結果、カーボンブレードに著しい磨耗は見られなかった。しかし、分解
前に作動確認して異常のなかった真空ポンプが点検中にトリップしたことから、作動確
認の方法を再検討する必要がある。また、真空ポンプの吸気口にポンプ保護のフィルタ
が取り付けてあるが、出口側にはないことが判った。入口側は透明なアクリルカバーで
ありフィルタが目視できたが、出口側は同じ形状の鋼製だったことから目視できず、内
部に同様にフィルタが取りついているものと思っていたが、分解点検の結果になにも
ことが判った。メーカに確認したところサイレンザとのことであったが、目的が理解で
きない。出口側にフィルタがなかったことから、戻り配管の出口付近に付着していた黒
い粉は真空ポンプのカーボンブレードの磨耗粉であることが判った。空気雰囲気の差圧
上昇の要因として、現状このブレードの磨耗粉は窒素雰囲気がの上昇率が小さいことから
影響していないものと思われるが、そのまま放置しておくと差圧上昇に影響を与えるほ
かりでなく、サンプリング流量の低下や閉塞を招くおそれがある。
②冷却系配管オイルスナバ点検

オイルスナバの油量低下があったことから全数について詳細に点検した。油漏れを調
査したところ、145体のうち29体に漏えいがあった。原因としては揚付時の取付不良と
リード管の熱変位に対する配慮不足によるものであった。油漏れ箇所のバルブ、継手、
リード管について取り替えを行った。特にリード管が直線的で熱変位に対する配慮が不
足していたものは伸縮性を持たせるリード管形状に変更した。（もじもじカーリー MS-95-1）

第3.4-1図にオイルスナバリード管ルート変更図を示す。
第3.4-1 図

オイルスナパリード管ルート変更図

CA520b-024

CA520a-080

—— 交換後のリード管ルート

——— 交換前のリード管ルート
（7）ドアバルブガス置換系第二真空ポンプサーマルトリップ（H7年8月）

模擬体処理運転において第二真空ポンプを起動したところサーマルトリップした。

現場にて第二真空ポンプを確認したところ、潤滑油が白く濁っており油面がレベルゲージで確認できないほど上昇していた。また、床設備を確認したところ水中台車床ドアバルブ弁体上面に水が溜まっていた。このことから模擬体を洗浄後、水中台車に受渡しを行うガス置換の際に水中接続筒の水を吸い込み真空ポンプ油液位上昇により過負荷トリップしたものと考えられる。

水中台車床ドアバルブ弁体に水が溜まった原因を調査するため、ドアバルブ上面にアクリル板を取り付けて弁体を開けたところ、弁体下面まで水面が上昇（約1.9m）していた。このことからドアバルブのシール性能は保持されていることが判った。そこで接続側の燃料出入機本体Bの内圧を調べたところ約−0.2kgf／cm²であったことから、本体Bが水中台車床ドアバルブに接続し模擬体を受け渡す際に本体内が負圧のため水中台車接続筒内の水位を上昇させドアバルブ弁体上面まで達したものと思われる。

ドアバルブガス置換系については、フィルタを開放したところ底部に約10ℓ水が溜まっていたので除去し、真空ポンプについてはオイルの白濁がなくなるまでオイル交換を実施した。

対策として燃料洗浄設備で模擬体を本体Bに受け渡す際に微正圧になるよう運転シーケンスを変更した。なお、現状は模擬体搬出運転を速やかに実施するための専用の運転シーケンスにおいての不具合であり、使用済燃料の処理運転においては問題ないようになっていることを確認した。

（8）平成7年度点検（H8年2月）

① 差圧式ナトリウム漏えい検出装置の真空ポンプ点検

A系14台について分解点検を実施した。従来はポンプベアリング交換、プレード交換等消耗品の交換を行うため分解していたが、組込み時の施工不良（ベアリング取付不良）の原因によるポンプトリップを発生させた。

よって、今回はポンプヘッド部一式の交換を行った。

現地で分解点検する手間を考えると、工場で組立てられたポンプヘッド一式を交換し
た方が品質管理上、信頼性上共に向上する。なお、現地で分解点検に要する人工数とポンプヘッド一式購入費は同等であり、点検コストのアップにはならないことから、今後もポンプヘッド一式交換でよいと考える。

B系ポンプ14台については今回、簡易点検を実施した。ポンプ寿命はメーカー推奨1年のため、2台交互運転するとして、1年毎にA系、B系を交互に分解点検する必要がある。

② 差圧式ナトリウム漏えい検出装置サブリング配管フラッシング

同真空ポンプの運転に伴い発生するロータプレードの磨耗粉が戻り配管に付着していることから、窒素ガスにて配管フラッシングを実施した。

これまでポンプ出口側には、この磨耗粉を捕集するフィルタが設置されていなかったことから、磨耗粉を捕獲することを目的に、今回、試験的に533CP002A, 2B系ポンプ出口配管部にフィルタを追設した。また、533CP001A, 1Bには、真空ポンプ本体サイレンサ部にポンププレードの磨耗粉捕獲用フィルタを新規に装備した。

他の系続については、これらのフィルタの効果及び系続としての性能を確認、評価した上で改造等を検討していく。（もんじゅなたろし MS-95-095）

第3.4-2 図に真空ポンプ構造図、第3.4-3 図に仮設フィルター配置図、第3.4-4 図にカートリッジフィルター組込み図を示す。
GSL-100Y
GSL-200
GSL-400
GSL-700Z

(※構造図はGSL-200Bをモデルにしてあります)
3.5 燃料検査設備

3.5.1 燃料検査設備の運転実績

燃料検査設備は原発炉運転中に破損燃料検査装置（遮発中性子法、カバーガス法、クシング法）により、燃料破損を検出した場合に、原発炉を停止し、燃料交換に先がけて破損した燃料集合体を同定する際に燃料を燃料移送ボットごと検査槽内に受け入れて、槽内に放出された核分裂生成ガスを検出することにより行う。これによって、通常は燃料出入機本体Ａの使用済のドリップパン置場として使用する。

SKS、燃料装荷において使用済ドリップパン置場として累計で約30体貯蔵した。

検査槽へのドリップパンの貯蔵量は最大9体で、通常、燃料交換または燃料処理貯蔵運転に伴い使用するドリップパンは5〜8体で計画している。

燃料装荷後の出力分配試験においては、燃料移送ボット入りの試験用集合体を約60体受け入れ、照射後のブの取出及び照射前のブの揮入に使用された。

3.5.2 燃料検査設備の保守実績

・平成4年度 検査槽床ドアバルブ 分解点検
・平成5年度 真空ポンプ 分解点検
・平成6年度 検査槽床ドアバルブ 分解点検
・γ線検出器 線源校正
・平成7年 γ線モニタ 線源校正、作動確認

3.5.3 燃料検査設備の運転、保守における特記事項

（1）燃料検査を行う場合の留意点

燃料検査槽は燃料移送ボットを受け入れることから、槽内にＮａの付着や堆積を生じる。このことから、検査槽は約150℃に電気ヒータで予熱保持している。また、使用済燃料入りポットを受け入れることから、燃料の崩壊熱を除去するため冷却ブロバが設けてある。しかし、使用済燃料入りポットの受入れはほとんど予定にないことから、通常はこの冷却ラインは燃料洗浄槽上部の冷却のためにスタンバイ状態としている。

これは使用済燃料を洗浄処理する際に洗浄槽で燃料出入機が使用済燃料を下降してい
る途中に何らかの原因で停止が停止した場合の冷却を検査槽冷却ブロワーで行うようにしている。従って、燃料検査槽に用済燃料を受け入れる場合は、前もって冷却配管（フランジ構造）を燃料洗浄槽側から検査槽側に接続を変えなければならない。

（2）平成5年度点検（燃料装荷前点検）（H5年6月）

ドアバルブガス置換系真空ポンプのオイラー油面低下の不具合を受け、検査槽真空ポンプについても同様な対策を実施した。

（3）検査槽底部へのナトリウム溜まり（H6年3月）

初期炉心構成後の出力分布試験において検査槽内には、燃料移送ボットを約60体受け入れることとなる。検査槽は破損燃料を同定するために燃料移送ボットの受入れをすることからボットからの滴下Ｎａを受けるためのドリップパンが底部に取り付けられている。このドリップパンの貯蔵Ｎａ容量は、寿命中のボット受入れ想定数（約30体）及びドリップパンからのＮａの滴下量の推定値（約4000cc）に余裕をみて約5ℓとしている。しかしながら、推定値を上回った場合を想定して、燃料出入戸本体Ａにより、取り出せる構造となっている。

出力分布試験における検査槽への移送ボット受入れ体数は設計受入れ体数を超えることから、試験中途でのドリップパンの交換が生じることになり、試験工程への影響を最小限にするため、予備のドリップパンを準備するとともに、これまで検査槽ドリップパンの交換実績がないことから、今回リハーサルを兼ねて交換を行った。取り出したドリップパンをグリッパ交換装置に移動して目視したところ、汚れたＮａが底部に溜まっていたが液面から5〜6cmの高さにＮａが浸った跡があった。また、ドリップパンの外下部には底部から約150mmの高さまでＮａに浸った跡があった。これらのことから検査槽内ドリップパン内のＮａが抜けたことが想定された。内部観察用ケースを検査槽ドアバルブに取付、内部観察をしたところ底部にＮａ溜まりがあることが判明した。

検査槽底部にＮａが溜まった原因は、ドリップパン設置部はメタルタッチとなっており、検査槽をガス置換した際、ドリップパン設置部より上の空間と下の空間で圧力差が生じるため、ドリップパンのサイフォンを通じて圧力バランスをとることとなり、ドリ
ドリップパン内のNaが検査槽底部に漏れ出たものと推定される。

底部に溜まったNa量は約1300ccと推定され、その回収のために急遽、回収装置を製作した。この回収装置によるNa回収は、ドアバルブガス置換系を利用して真空引きにより行った。回収タンクは2ℓと1ℓを用意し、最初に2ℓで行い、後で1ℓも使用した。2ℓ容器はほぼいっぱいになっていたが、1ℓにはほとんどNaはなかった。

ドリップパンについては、設置面の上下で圧力差が生じないように連通する構造に変更することとし、ドリップパンの上部円筒に3ヶ所貫通孔を明けた。これによりドリップパンのNa貯蔵容量が5ℓから4.5ℓになった。また、同種構造のドリップパンを有する燃料出入機本体A及びBについても同様な対策を取ることとした。

(4) 出力分布試験後の検査槽ドリップパン交換時のナトリウム溜まり（H7年3月）

燃料交換に伴う燃料出入機本体Aドリップパンの交換頻度は、設計上は燃料移送ボット70体（滴下量45g/体）としているが、燃料装荷の実績では最大滴下量23g/体から120体取扱ごとに変更とした。出力分布試験において検査槽ドリップパンへの滴下量は取扱体数が60体であることから、試験途中での交換の必要はないと判断して試験を実施した。試験を終了したことから、ドリップパンの交換を行うため使用したドリップパンをグリッパ交換装置に移動して内部を確認したところ、Naが底部の一部が見える位しかなく、外表面全体に滴状のNaが付着していた。このことからNaが再び槽内底部に抜けたものと思われることから観察治具を取り付けて観察したところ底部にNaが滞留しているのが確認された。

原因は、滴下Na量が貯蔵容量を超えたために、ドリップパン引き抜き時にサイフォン管から漏れ出たものと推定される。

滴下Na量が貯蔵容量を超えた原因は、ボット内の試験用集合体から泊ホールダーを抜くために泊ホールダー取扱装置のグリッパがボット内のNa中に入ったことにより、ボット内のNa液位が上昇しボットのサイフォンラインからオーバフローし、検査槽のドリップパンに収納された。このグリッパ内のNaの考慮が足りずドリップパンの貯蔵容量を超えてしまったものと思われる。従って、前回使用した回収タンクの容量では足りないことが考えられたので、5ℓ容量に改造し、回収作業を行った。その結果、約2.3ℓ回収された。
3. 6 燃料洗浄設備

3.6.1 燃料洗浄設備の運転実績

燃料洗浄設備は炉外燃料貯蔵槽に保管している使用済燃料等を取り出し、燃料池に貯蔵する際に、付着しているNaを洗浄除去するための設備で、湿潤アルゴンガス洗浄及び脱塩水循環洗浄により行われる。

SKS以降模擬体洗浄処理運転を開始した平成6年9月までの間、ほとんど休止状態で保持されていた。模擬体は平成6年9月に4体、平成7年2月に50体、8月から11月の間で144体の計198体洗浄処理した。11月には被洗浄体への付着Na量を確認するために洗浄、乾燥済の模擬体3体に一定量のNaを入れてNa定量洗浄確認を行った。

模擬体洗浄は専用の運転ソフトに変更し4体／日で洗浄運転をて行った結果、短期間で処理ができた。

3.6.2 燃料洗浄設備の保守実績

・平成5年度 燃料洗浄槽床ドアパルプ 分解点検
・平成6年度 真空ポンプ 分解点検
 電動弁（6台） 分解点検

3.6.3 燃料洗浄設備の運転、保守における特記事項

（1）平成5年度点検（H5年12月）

燃料洗浄槽床ドアパルプはSKS試験中のH3年9月に開閉動作不具合を生じて分解点検を行ったが、動作不良の原因として洗浄運転に伴う湿分がドアパルプのセルフロック部に錆を発生させて開閉トルクを増加したことが判っており、分解点検以降約40体の洗浄運転を行っていることから、ドアパルプ内部のNa付着状況、錆の発生状況を確認するために分解点検を実施した。

点検の結果、ドアパルプ内部のNa付着状況は、ケーシング、シールフランジ上面等に少量の水酸化Naが付着していた。錆の状況は、セルフロック座及び弁座上り防止片に錆の発生が見られた。洗浄時にドアパルプ内に湿分が浸入し長期間、閉状態で保持されていたため錆が発生したものと思われる。錆を除去し潤滑剤（モリコート）を塗布して組み立てた。

-194-
(2) 真空ポンプ潤滑油の白濁（H5年7月）

潤滑油の白濁が確認されたことから、油交換を実施した。その後、8回洗浄運転を行ったところ、白濁が生じたので油交換したところ、約300cc程ヘドロが出てきた。油交換後に約1時間真空ポンプを運転したら、油が白濁し、油面が1cm上昇した。油を抜き取ったところ、約200ccの透明な水が出てきた。H4年10月にも混濁した油面がスケールオーバし、油交換の結果、抜き取った油量は定格5ℓに対し約7.5ℓあり、水分混入が確認されていた。このことから洗浄運転にともなって真空ポンプに水分が相当な量持ち込まれることから、真空ポンプの保護のための対策が必要である。

(3) アルゴンガス加熱器出口温度低（H6年9月）

アルゴンガス加熱器は、使用済燃料等を洗浄し燃料投入機に受渡した後、次の被洗浄体を洗浄槽に受け入れる際に、燃料投入機本体Aへの混入の防止するため洗浄槽を乾燥するために加熱したアルゴンガスを送る機能である。

9月21日から模擬体の洗浄を開始したが、22日まで行った4体のうち3体について処理運転時に加熱器出口温度低で運転が停止した。脱湿運転は加熱器の温度が230℃に設定された状態でアルゴンガスを40分間循環して行うが、循環中に出口温度が200℃以下になったため温度低が発報して運転が停止したものである。本事象はH5年3月のSKS後始末での洗浄運転、H5年6月、9月の模擬燃料集合体の洗浄運転時にも発生している。ヒートを調査した結果、異常はなかった。原因を検討した結果、循環ライン切替時の急激な流量増大した場合に温度調節器が追随できていないことが判った。そこで出口温度のみで行っていた温度調節を流量他のファクタを加えて制御性を向上させ、確認試験を行ったが改善はほとんど見られなかった。しかしながら、平成7年2月から模擬体処理運転を開始し、当初は温度低が発生していたが、7体目以降は循環ラインを切り替えても端側に温度が低下するような現象がなくなり安定した状態となった。長期間の停止により系统配管に水分が滞留していた可能性が考えられる。

(4) 平成6年度点検（平成6年11月）

真空ポンプ内部への水分混入があったことから、真空ポンプの内部状況の確認及び摂動部の機能状況の確認を目的に分解点検を実施した。各部品の摂動部の点検の結果、運
転性能に係わる傷、変形及び摩擦等の異常はなかった。潤滑油については油タンク底部にヘドロ化した油が溜まっていた。

排気側の油毎ラップの蓋を取り外したところ、エレメント3個の内1個の取付ナットが緩み、エレメントがずれていた。真空ポンプの運転による振動でナットが緩んだものと思われる。取付ナットをダブリナットとする遮り止め対策を行った。また、同じ仕様の真空ポンプを使用している燃料交換アルゴンガス系真空ポンプについても同様な対策を実施した。

（5）模擬体洗浄搬出運転（平成7年2月〜11月）

燃料装荷で取り出した模擬体212体について、第3サイクル運転までに取り出す必要があるとの技術課からの要請により、運転時間を短縮して4体/日の処理を目的に模擬体洗浄処理専用の運転ソフトに変更して模擬体を洗浄搬出した。模擬体洗浄処理用の運転ソフトの概要は、模擬体であることから冷却運転を燃料出入口設備及び燃料洗浄設備において削除した。これにより、燃料出入口具体Aドリップパンへの滴下Na量が低減し、ドリップパンの交換頻度が少なくなった。燃料洗浄設備については、1体あたり10分短縮した。湿潤ガス洗浄及び脱塩水循環洗浄においてもH6年9月に実施した模擬体処理運転の結果を反映して洗浄時間を各々20分、5分に短縮する等により一体の処理に約3時間30分で、更に4体連続処理する場合のソフトにすることで、ほぼ12時間/4体との見通しを得たので変更し、洗浄処理運転を実施した。実際には、洗浄槽の脱湿運転に不備が発見され、それにより脱湿運転が延びた等により約13時間かかった。しかし、ソフト変更前に比べると変更前は約15時間/3体であり、大幅に処理時間が短縮された。この結果として、平成7年中にほぼ全数の洗浄処理が終了した。

模擬体処理は冷却運転を除去した専用の運転ソフトに変更して行ったことから、模擬体への付着Naは、約250gであった。また、最後に運転ソフトを復旧して確認したところ冷却運転を実施した場合は、約100gで半分以下になることが分かった。その差約150gはドリップドリップパンに滴下することになり、洗浄処理運転時のドリップパン滴下量について、今後確認する必要がある。（テクニック MS-95-010 及び93）
（6）模擬体洗浄搬出運転の課題（テニカルレポート MS-95-083）

① 真空ポンプへの水分混入

SKS直後に真空ポンプ潤滑油への水分の混入が発見されたが、模擬体の連続処理で水分が多量に潤滑油中に混入することが明らかとなったので、洗浄搬出前に真空ポンプに油水分離装置を仮に取り付けた。洗浄運転に伴い油水分離装置で水分が分離されたことから、この間に真空ポンプの油交換は必要なかったが、1日に2回油水分離装置からの水抜きを行わなければならない。分離回収された水分は約200 ～300cc /体だった。回収した水の処理が容易でないことから、水分が混入しないような対策または、水分が入っても問題にならない水封式真空ポンプ等への変更等恒久対策が必要である。

② 洗浄槽の乾燥不良

洗浄槽の乾燥運転が十分でないことが判ったことから、模擬体処理運転の中で各種の対策を行った。当初約200℃のガスを20分循環すれば乾燥できるということで余裕をみて40分に設定していたが、乾燥後の槽内の露点（湿度）を測定したところ乾燥していなかったことが判った。調査した結果、アルゴンガスが流れる槽や配管は乾燥するが、槽や配管に接続されている枝配管等は流路がないことから高温のガスが流れず表面に付着した水分が乾燥できない可能性が高いことが判った。そこで第一止弁まで仮設のヒータを取り付けして運転したところ、改善がみられたが十分とは言えなかった。そこでガス置換するときの真空放置時間を10分間保持することによる真空乾燥を実施したところ、ほぼ目標の露点温度 −10℃に達することが判った。なお、更に受入れ前にガス置換を行うことにより確実に満足することが判った。仮設のヒータの本設化と運転ソフトの変更を検討する。第3.6-1図に乾燥確認試験結果を示す。

③ 洗浄槽出口フィルタのフィルタ最適孔径確認試験

模擬体洗浄運転において処理体数の増加とともに洗浄槽出口フィルタの差圧が上昇するが、交換条件の差圧に達する以前に循環流量「低」が検出され、運転が停止するようになった。設計では約120体で交換条件に達するものとしていたが、320体程度で流量が大きく脈動し流量低により運転が停止する影響が出た。洗浄槽出口フィルタは使用済燃料に付着するＣＰを捕集し、下流側の液廃設備の機器、配管の放射線量
を上昇させたいめのものであり、模擬体にはC Pが付着していないことが確認されていることから、以降の模擬体洗浄処理運転においてはフィルタレメントを装着せずに運転し、フィルタが想定以上に詰まった原因を調査することとした。

当初節制の0.45 µのフィルタでは約30体で規定圧に達してしまうことから、CP除去性能を確保できる範囲で、1燃交分の洗浄処理が行えるようなフィルタ孔径を選定するため試験装置を用いて実廃液による通液試験を行った。フィルタ孔径を0.8 µと3 µで実施したところ、0.8 µフィルタは約14体分の通液で規定差圧(1.5Kg／cm²)に達した。3 µフィルタは1燃交分通液してもほとんど差圧の上昇はなかった。

「常陽」における廃液の分析結果から、7 µ以下のフィルタであれば放射線線状上配的な60Coは90％まで除去できるとの報告があり、上記試験結果から3 µフィルタであればCP除去性能を確保しつつ、1燃交分の処理ができる見通しを得た。

また、試験に用いたフィルタの付着物の分析を行ったところ、ステンレス鋼(Fe, Cr, Ni等)系及び一般無機系(Al, Si, Na, Ca等)が混在する微粒子が付着していた。

第3.6-2 図にフィルタ通液試験結果を示す。

(7) ナトリウム定量洗浄試験（平成7年11月）

燃料洗浄設備で使用済炉心構成要素のNa洗浄を実施した場合に、現状、洗浄Na量を直接確認することができない。SKSの洗浄試験において水素濃度、洗浄廃液分析結果、電導度等により模擬炉心構成要素の洗浄Naを評価しているが、それぞれの結果には明らかに違いがあったことから、予め計量したNaを模擬体に装荷し、燃料洗浄設備で洗浄することにより、水素濃度、電導度の運転データと洗浄Naの相関関係を確認した。洗浄試験は、Na装荷量を約50g, 100g, 200gの3ケースについて各1回実施した。

試験の結果、各定量した洗浄Naに対し、水素濃度から算出したNa量がほぼ近似値となることが確認できた。今後、燃料洗浄設備で使用済炉心構成要素を洗浄する場合の洗浄Naを評価する上で有効な試験結果が得られた。（テクニカル MS-95-093）

この結果から、模擬体洗浄処理時のNa洗浄量を評価したところ、ほとんどの処理運転を行った本体A直接冷却系停止状態で約200g、最後に運転ソフトを復旧して行った本体A直接冷却系運転状態では約100gであった。

第3.6-3 図にNa定量洗浄における水素濃度、電導度の評価を示す。
第3．6-1 図 脱湿確認試験結果

<table>
<thead>
<tr>
<th>試験No</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>脱湿時間</td>
<td>65分</td>
</tr>
<tr>
<td>真空保持</td>
<td>10分3回</td>
<td>10分3回</td>
<td>10分3回</td>
<td>10分3回</td>
<td>10分3回</td>
<td>10分3回</td>
<td>10分3回</td>
<td>5分3回</td>
<td>10分3回</td>
<td>10分1回</td>
</tr>
<tr>
<td>ブロー</td>
<td>10分10秒</td>
</tr>
<tr>
<td>オリフィス部 脱湿後</td>
<td>7.3℃</td>
<td>7.2℃</td>
<td>7.0℃</td>
<td>7.4℃</td>
<td>7.3℃</td>
<td>10.8℃</td>
<td>9.6℃</td>
<td>9.2℃</td>
<td>15.8℃</td>
<td></td>
</tr>
<tr>
<td>オリフィス部 置換後</td>
<td>-5.8℃</td>
<td>-21.1℃</td>
<td>-4.7℃</td>
<td>2.6℃</td>
<td>2.5℃</td>
<td>-2.9℃</td>
<td>-2.7℃</td>
<td>-10.4℃</td>
<td>5.4℃</td>
<td></td>
</tr>
<tr>
<td>洗浄槽 置換後</td>
<td>-9.3℃</td>
<td>-9.8℃</td>
<td>3.2℃</td>
<td>-4.1℃</td>
<td>-1.7℃</td>
<td>12.9℃</td>
<td>10.7℃</td>
<td>1.8℃</td>
<td>13.2℃</td>
<td></td>
</tr>
<tr>
<td>洗浄槽 一晩後</td>
<td>3.4℃</td>
<td>0.6℃</td>
<td>-0.6℃</td>
<td>11.7℃</td>
<td>-10.3℃</td>
<td>-25.0℃</td>
<td>-7.1℃</td>
<td>12.9℃</td>
<td>10.7℃</td>
<td>1.8℃</td>
</tr>
</tbody>
</table>
図1 0.8μフィルタ流量上昇

図2 3μフィルタ流量上昇

図3 0.8μフィルタ圧力（3μ通過液）

第3.6-2 図 フィルタ通液試験結果
第3.6-3図 Na定量洗浄における水素濃度、電導度

水素濃度によるNa量の評価

![水素濃度によるNa量の評価グラフ](image)

電導度によるNa量の評価

![電導度によるNa量の評価グラフ](image)
3.7 燃料缶詰設備

3.7.1 燃料缶詰設備の運用実績

燃料缶詰設備は、洗浄後の使用済燃料及び制御棒を缶詰缶に密閉し、万一、燃料池で長期保管中に何らかの原因で被覆管が破損し、放射性物質が漏れ出るような事態が生じても水中及び室内雰囲気等に出ないよう缶詰缶に収納して貯蔵するものである。

燃料缶詰設備はＳＫＳで機能確認を行った平成４年５月から平成７年11月までの約3年間休止、保管状態であった。一連の模擬体洗浄処理運転の最後の平成７年11月に、運転員の訓練と設備の機能確認を兼ねて5体の缶詰処理運転を通じた。

3.7.2 燃料缶詰設備の保守実績

・平成７年度 燃料缶詰装置 作動確認

3.7.3 燃料缶詰設備の運用、保守における特記事項

（1）模擬体缶詰処理運転（Ｈ7年11月）

ＳＫＳ以降、長期間休止状態にあり、次に使用する前の第一回検査時に分解点検を行う計画であるが、プラント第一課から運転員の訓練をしたいとの要求があったことと、次に運転するに当たって当然のことながら、使用済燃料を扱うこととなる。SKSで機能確認をしているものの色あせて無端か確認を終えた経緯もあり、今回運転した結果を定検時の分解点検に活かせる可能性もあることから、故障が発生することを承知の上で模擬体缶詰処理運転を実施した。

模擬体缶詰処理運転前に燃料缶詰設備単体での動作確認を行ったところ、缶詰缶の蓋を固定するためのボルト締め装置にナットランナが一対ついているのが、片側が回転しないことが判った。ナットランナは圧縮空気により作動させる構造となっており、取り外して分解したところ、紡績モータのインペラがケーシング中心より偏心していて回転に伴い、インペラが軸内に入ったり出たりするようになっているが、インペラに油とゴミの固形物が固着して動作を妨げていることが判った。図のように除去して組立て、動作試験を行ったところ、回転するもののもう一方に比べ約半分の回転数であった。そこでタイマーを延ばすことで対処することとした。なんとか、単体での動作確認を終えたことから模擬体の缶詰処理を5体行った。問題点及び改善点を別表に示す。
<table>
<thead>
<tr>
<th>No.</th>
<th>発生日</th>
<th>項目</th>
<th>発生事象内容</th>
<th>原因及び仮処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/2</td>
<td>仏像装置用電気接続点の異常</td>
<td>仏像装置用電気接続点の電力が変化しない。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10/11</td>
<td>仏像設置１ＴＶ映像不缺</td>
<td>仏像設置の上部及び側面１ＴＶが写らない。</td>
<td>湿気による電極の腐食が原因で球切れが発生した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>仏像設置運転中に球切れが発生した場合どうするのか？多重化する等対策を行う必要はないか</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)フォーカス用モータの損傷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2)フォーカス機構相関部の回復</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>主板１ＴＶの切換ＳＷの接触不良。仏像装置上部と側面の切り換えが故障</td>
</tr>
<tr>
<td>3</td>
<td>10/11</td>
<td>仏像設置１ＴＶ映像のノイズ</td>
<td>仏像設置１ＴＶ映像にノイズが発生している。</td>
<td>製造メーカーにて調査を行ったが原因不明。</td>
</tr>
<tr>
<td>4</td>
<td>10/12</td>
<td>ナットランナーが動かない</td>
<td>補助盤の単独操作にて緩め又は締めを行ったが片側（空圧モーター）のナットが動作しなかった。</td>
<td>空圧モータ内搭載部の回転ナットの駆動を分解・再組立し動作可能となったが、駆動抵抗が大きく、正常なモータの半分の回転数しか動作しなかった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>この為、締め、緩めのタイミングを回転数の少ないモータに合わせ変更した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(試験後、タイマー設定に復旧した)</td>
</tr>
<tr>
<td>No</td>
<td>発生日</td>
<td>項 目</td>
<td>発生事故内容</td>
<td>原因及び仮処置</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>5</td>
<td>10/31</td>
<td>561PSV19a, b用のCPトリー</td>
<td>補助盤の単独により異常操作中、ナットランナー561PSV19a, b 用の電源がトリップした。</td>
<td>電磁弁の抵抗、絶縁とも異常なし。</td>
</tr>
<tr>
<td>6</td>
<td>11/6</td>
<td>燃料番号読み取り不可</td>
<td>燃料設定ミス（側面）による燃料番号の読み取りが行えない。</td>
<td>燃料の端からしか照明が当てていない為、逆側に番号の刻印が有る場合には、読み取りがほとんど行えない。</td>
</tr>
<tr>
<td>7</td>
<td>11/6</td>
<td>給排水アーム昇降トルク高</td>
<td>SBP5007 保護板取付進行中、給排水アームの昇降トルク高が発生した。 (以下、エンドスイッチ、変速機構の設定値を2から2.5目盛に変更。)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11/6</td>
<td>SBP5007 保護板取付進行中、給排水アームの昇降トルク高が発生した場合、自動化除外しない。</td>
<td>(1)リミテラクタ下限側の設定値を2から2.5目盛に変更。 (2)エンドスイッチ、変速機構の設定値を2から2.5目盛に変更。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11/6</td>
<td>給排気運転自動化立ち上げ時の進行不具合</td>
<td>SBP6007 保護板取付進行中、自動化除外に成らず。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SBP6007 保護板取付進行中、自動化除外に成らず。</td>
<td>計算機から給排気運転開始が出来なかったため、計測機から信号が通らされない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SBP5001, 5101の給排気運転が、出入機が保護設置に接続しないと開始されない。</td>
<td>計算機から給排気運転開始が出来なかったため、計測機から信号が通らされない。</td>
</tr>
</tbody>
</table>
甘質装置動作確認時の発生事象リスト （3/3）

<table>
<thead>
<tr>
<th>No</th>
<th>発生日</th>
<th>項目</th>
<th>発生事象内容</th>
<th>原因及び仮処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11/6</td>
<td>SBP5107 甘質気密試験 除外停止</td>
<td>甘質気密試験を行った所、「気密試験機故障」及び「漏れ」が発生し、自動化除外となった。 （同事象が5体全てに於いて発生した）</td>
<td>現場からの操作で気密試験を行った所、約70mm H₂O の漏えい量を示した。 補助盤の連動運転でノズル漏れチェックを行った所、異常なく運転は終了した。</td>
</tr>
<tr>
<td>11</td>
<td>11/7</td>
<td>SBP5105 甘質内水位設定 連動運転失常</td>
<td>甘質内水位設定を確認し、給排水アームのノズルにて排水タンク内に甘質容器内の水を排出したが、その水が排水タンク水位低を発生できず。 連動運転失常となった。</td>
<td>今回使用した構築材料では、給水した水量が足りないことだったため、SBP5005 甘質内水位での水量を規定の51% とした。</td>
</tr>
<tr>
<td>12</td>
<td>11/9</td>
<td>SBP5105 甘質ポルト検 除外停止</td>
<td>甘質のポルト検中、甘質容器空気供給系統流水低（3 Nm³/hr）が発生し、自動化除外となった。</td>
<td>空気圧モーター用圧縮空気供給正逆選択弁の2つつ側561PSV19a,b に動作不良があり、排気弁が開いているにもかかわらず空気モーターに空気を送り続けた為、空圧モーターのシール部より、甘質容器内圧縮空気が流れ、容器内圧力が上昇し流量が低下した。</td>
</tr>
</tbody>
</table>

自動運転でのポルト検中、除外停止等で途中停止した場合の運転方法を示してほしい。 又、補助盤運動によるポルト検の再起動が出るようにしてほしい。
3. 水中燃料貯蔵設備

3.8 水中燃料貯蔵設備

3.8.1 水中燃料貯蔵設備の運転実績

水中燃料貯蔵設備は使用済燃料等を燃料池内の貯蔵ラックに長期的に貯蔵するもので保管中の燃料等からの放射熱の除去を行う。

燃料池はSKSで水張りを行った以降、水を張った状態で水の清浄度を維持するため水洗浄系を連続運転している。

SKS以降はSKSの後始末として数体の模擬燃料体を受入れ、取り出し運転しか行っていなかったが、平成7年2月から11月にかけて模擬体を約200体受入れた。また、模擬体は取り出して、乾燥保管することとし、平成7年4月〜11月までで115体の乾燥を行い、A/B内に保管している。第3.8-1表に模擬体乾燥実績を示す。

（もじろくにかた MS-95-91）

3.8.2 水中燃料貯蔵設備の保守実績

・平成5年度 水中台車床ドアバルブ 分解点検
 燃料池水冷却装置循環ポンプA 分解点検
 燃料池水冷発熱装置熱交換器A 開放点検

・平成6年度 燃料移送機グリッパ駆動装置 性能確認
 燃料移送機走行台車 簡易点検
 燃料池水冷却装置循環ポンプB 分解点検

・平成7年度 燃料池水冷却装置カート材供給ベルト 分解点検

3.8.3 水中燃料貯蔵設備の運転、保守における特記事項

（1）平成5年度点検（H5年12月）

水中台車床ドアバルブの分解点検を行った。水中台車床ドアバルブ下部は燃料池の水面があることから、ドアバルブ内部は湿度が高い状態にあると考えられる。同じように湿度が高いドアバルブである燃料洗浄槽ドアバルブがSKS中に錆によると思われる原因で動作不良を起こした経緯があり、H2年8月に据付てから初めて点検するもので、これまでに約30回の開閉しており、内部の錆の発生状況等を確認するため点検した。
第3.8-1 表 模擬体乾燥実績

<table>
<thead>
<tr>
<th>D</th>
<th>U（内側）</th>
<th>D</th>
<th>S（外側）</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51</td>
<td>1</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>2</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>3</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>4</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>5</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>6</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>7</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>8</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>59</td>
<td>9</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>10</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>11</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>62</td>
<td>12</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>63</td>
<td>13</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>64</td>
<td>14</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>15</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>66</td>
<td>16</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>17</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>68</td>
<td>18</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>69</td>
<td>19</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>20</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>71</td>
<td>21</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>72</td>
<td>22</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>73</td>
<td>23</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>74</td>
<td>24</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>25</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>76</td>
<td>26</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>77</td>
<td>27</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>78</td>
<td>28</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>79</td>
<td>29</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>30</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>81</td>
<td>31</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>82</td>
<td>32</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>83</td>
<td>33</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>84</td>
<td>34</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>85</td>
<td>35</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>86</td>
<td>36</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>87</td>
<td>37</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>88</td>
<td>38</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>89</td>
<td>39</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>90</td>
<td>40</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>91</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>92</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>93</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>94</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>95</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>96</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>97</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>98</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>99</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 第1回目 50体
 (7/4/17 〜 7/5/24)
- 第2回目 65体
 (7/10/9 〜 8/1/31)
合計 115体
点検結果は、開閉動作に影響を与える程ではないが、セルフロック座の挙動面に詰が
発生していた。作動試験において詰の影響はみられなかったが、湿度が高い環境にある
ことから、使用状況よりも経年による影響を考慮して点検を実施する必要がある。

（２）燃料池水面清掃用ろ過装置の購入（H5年12月～H6年3月）
燃料池及び固体廃棄物貯蔵プールの水面にゴミ、埃等が浮いて水中が見にくい状況が
散見されるようになった。燃料池及び固体廃棄物貯蔵プールともオーバフロラインがな
く表面に浮遊するゴミの除去ができない。ゴミはやがて沈んで底部に溜まり、浄化系に
より捕集されることになるが水質の低下をまねくこととなる。また、汚れた水面を放置
していた場合に外部からの視察、見学者等に対しPA上好ましくない。そこで、移動式
のろ過装置を購入し、燃料池及び固体廃棄物貯蔵プールの水面清掃をした。
ろ過装置は表面の水を吸い込んでフィルタを通してプールに戻すもので、移動して使
用できるようコンパクトに製作されている。
その後、使用した実績から吸い込み口形状の改良を行った。（特許申請済）
それにより細かなレベル調整をしなくても連続して運転が可能となった。

（3）プレコート材供給ポンプ吐出圧力低下（H7年4月）
燃料池冷却浄化系プレコートフィルタへのプレコート運転を行った際に、プレコー
ト材供給ポンプの吐出圧力が殆ど発生しない事象が発生した。そこで変速機によりポンプ
の回転数を上げたが変化がなかった。これまでの運転においては、このようなことはな
かったが、起動トルクが増加傾向にあることが確認されていた。
燃料池冷却浄化系の運転はプレコートフィルタをバイパスしてろ過器により水質
を保持できているので現状、問題ないと判断できることからバイパス運転を行うことと
し、H7年度点検でプレコート材供給ポンプを分解点検することとした。
ポンプ吐出圧力低下の原因としては、据付てから約5年経過していることから、ステ
ータが軽年変化で硬化しプレコート材スラリにより急激に磨耗しロータとステータとの
ギャップが広がった等が考えられる。
（4）燃料移送機走行トルク高（平成7年11月）

燃料洗浄設備のN a 定量洗浄試験において、洗浄後の模擬体を燃料移送機がつかむためわ水中台車との取合位置に移動を開始したところ、走行トルク高の警報により運転が停止した。燃料移送機のトルク高はS K S 中にも発生し、走行用減速機のオイルの油種を粘性の低いものに変えた経緯があり、オイル等の点検を行ったが油量や汚れに異常はなかった。CRT で燃料移送機走行トルクのデータを確認したところ、明らかに上昇していた。第3.8-1 図に清掃前の燃料移送機走行トルクを示す。

以前、燃料出入口走行トルクが上昇し、トルク検出器の清掃を行って回復した経験があったことから、トルク検出器内部を確認した。内部には多くのカーボン粉で詰まっていた。ブラッシュが磨耗して粉末が飛散し、絶縁抵抗を低下させトルク指示が不安定になったことが分かった。検出器内部を清掃後、走行試験をして異常なく走行できることを確認した。

（5）H 7年度設備点検（H 8年2月）

プレコート材供給ポンプの分解点検を実施したところ、明らかに経年劣化によるものと思われるステータの磨耗、びび割れ及び欠落が見られた。また、樹脂の付着が確認された。ステータの材質は移送流体が粉末イオン交換樹脂スラリであることから耐磨耗性を考慮してポリウレタンとしている。ポリウレタンはN B R等他のゴム材料と比較した場合に、約2倍の起動トルクが必要であり、経年により更に硬化しトルクが増加することから、ステータの材質をN B Rに変更してモータの起動トルクに余裕を持たせることとした。但し、材質変更だけでは、ステータ磨耗の解決にならない。樹脂スラリ移送後の配管、ポンプの洗浄操作が自動運転の中であるが、洗浄が十分行われることを今後、運転の中で確認していく。
R0101 トレンド表示 (グループ=2) (グループ=名=GROUP 2) 95/11/29 MONJU 09:44

1. TA000 水中台車走行トルク 30 KG·M ... 0 ... 0
2. TA016 地下台車走行トルク 74.0 KG·M ... 0.0 ... 0.0
3. TA005 燃料移送機走行トルク1 0.0 KG·M ... 0.0 ... 1.0
4. TA006 燃料移送機走行トルク2 0.1 KG·M ... 0.0 ... 1.0
5. TA007 燃料移送機横行トルク 0.1 KG·M ... 0.0 ... 1.0

早乾

表示(2)
1: カレント
2: ヒストリカル

ヒストリカルSTART
11/28 10:00

燃料舗が設備 燃料洗浄設備 燃料出入設備

※※ IFD LP1 第3.8-1図 清掃前の燃料移送機走行トルク
3. 9 新燃料受入貯蔵設備

3.9.1 新燃料受入貯蔵設備の運転実績

新燃料受入貯蔵設備は輸送されてくる新燃料を受入れ、一時貯蔵した後、次の燃料交換に備えてＥＶＳＴへ移送するための設備である。

新燃料受入貯蔵設備は平成4年7月に燃料装荷のための内側炉心燃料を受入れを開始してから、平成5年10月の燃料装荷開始までに約150体受入れ、136体をＥＶＳＴへ移送した。その後も外側炉心燃料を受入れ平成6年4月には延べ約200体の初期炉心構成用の受入れ、移送を終えた。

平成7年4月制御棒19体のＥＶＳＴ移送、6月新燃料24体の受入れ、7月プルンケット燃料移送、11月新燃料24体の移送、11月末新燃料24体の受入れを実施した。

3.9.2 新燃料受入貯蔵設備の保守実績

・平成4年度
 新燃料検査装置α線検出器 線源校正
 新燃料移送機グリッパ 分解点検
 新燃料移送機走行台車 簡易点検
 地下台車床ドアバルブ 分解点検

・平成5年度
 新燃料検査装置α線検出器 線源校正
 新燃料移送機グリッパ 分解点検
 新燃料移送機グリッパ駆動装置(トルキ) 分解点検
 地下台車床ドアバルブ 開放点検
 新燃料予熱装置循環ブロワ 分解点検
 新燃料予熱装置空気操作弁(4台) 分解点検
 地下台車燃料収納管 内部清掃
 新燃料予熱装置加熱器 ヒータ絶縁抵抗測定
 新燃料方位調整治具 性能確認

・平成6年度
 新燃料検査装置α線検出器 線源校正
 新燃料方位調整治具 性能確認
 新燃料予熱装置冷却器 開放点検

・平成7年度
 新燃料検査装置α線モニタ 線源校正、作動確認
3.9.3 新燃料受入貯蔵設備の運転、保守における特記事項

（1）平成4年度点検（H4年4月）

新燃料移送機はTKS、SKSで約100体の模擬燃料を取り扱っている。今後、燃料装荷のために入新燃料を約200体受け入れ、移送を行うことから、新燃料移送時にの健全性を担保するためグリッパの分解点検を実施した。点検結果は爪等に磨耗はみられず、作動状況は良好であった。

（2）地下台車燃料収納管内Na付着（H5年6月）

新燃料等のEVST移送運転において、固定吸収体を地下台車燃料収納管で予熱する際に予熱用スリープを取り外す必要があり、スリープを取り外すとして内部を目視確認したところ、収納管と予熱用スリープの間隙にNaが多量に付着しているのが発見された。これは燃料出入口本体Aで収納管内の新燃料をつかむ際にグリッパからNaが滴下したものか、堆積したものですでそのまま放置しておくと、スリープの固着、放射性Naの放散等の原因になることから、滴下Naがスリープの間隙へ浸入することを防止するとともに点検時等に滴下したNaを簡単に除去できるようNa受け皿をスリープと収納管の間に設置した。第3.9-1図に地下台車収納管内滴下Na除去方法の改善を示す。

（3）平成5年度点検（H5年11月）

H4年度点検以降、約160体の新燃料受入れとEVSTへの移送を行ったことから、昨年に続いてグリッパの分解点検を実施した。点検の結果、正常な状態であることを確認した。定常的な運転になると新燃料移送機で1年間に取り扱う新燃料等は約200体であり、点検の状況からグリッパの分解点検は2年毎にしても支障ないものと思われる。

地下台車新燃料予熱装置は、新燃料等をEVSTに移送する際に燃料出入口設備に受渡す前に新燃料等を予め約150℃以上に予熱するもので、約240℃に加熱されたアルゴンガスをブロワで循環することにより行う。従って予熱用ブロワは高温になる。TKSからこれまでに延べ約900時間（約2燃交分）運転しており熱変形等の熱影響を確認するため分解点検した。点検の結果、ケーシング内面にわずかにNa粉が付着していた。これは燃料出入口が地下台車と接続し新燃料等をつかむ時にグリッパからNaが滴下し、予
第3.9-1 図 地下台車収納管内滴下Na除去方法の改善

<table>
<thead>
<tr>
<th>改善前</th>
<th>改善後</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下台車</td>
<td>地下台車</td>
</tr>
<tr>
<td>収納管A</td>
<td>収納管A</td>
</tr>
<tr>
<td>重力A</td>
<td>重力A</td>
</tr>
<tr>
<td>溶融Na</td>
<td>溶融Na</td>
</tr>
</tbody>
</table>

改善前の図には、地下台車収納管内滴下Na除去方法のスケッチが示されています。改善後には、固定用ネジ（交換可能）等が追加されています。

図中に示されている部分は、水冷Aグリッパ、地下台車可動案内筒、予熱用スリーブ、収納管A、固定用ネジ、Na受け皿（交換可能）等を含んでいます。

図は、地下台車収納管内滴下Na除去方法の改善を示しています。
熱運転の際にNaが溶融し系内に移行しプロラに付着したものと考えられる。従ってプロラの上流に設置されている空気冷却器内にもNaが付着しているものと思われる。

（4）平成6年度点検（H6年11月）

昨年実施した地下台車新燃料予熱用プロラの点検結果を反映して、空気冷却器の開放点検を実施した。平板を取り外して内部を確認したところ管側内部にNa粉が付着していた。特に予熱ガス出口側が入口側に比べNa付着及び堆積が多かった。これは予熱ガスが空気冷却器で冷やされて出口側に析出、堆積したものと推定される。また、冷却管の内部をファイバースコープで確認したところ、全ての冷却管内部の全体にNaベースの付着が観察され、冷却管についても入口側よりも出口側の方が付着量が多くなる傾向を示していた。付着しているNa粉は黄色で、既に炭酸Na化しているようであった。

付着していたNaは、ナイロンブラシ、ウエス等で除去した。このNaは燃料出入機本体とグリッパから地下台車収納管に滴下したNaが、予熱運転でミストとなって系内に流入したものであるが、系内への流入はプロラ等の機器の故障の原因や放射性物質の拡散になることから何らかの改善策の検討が必要である。
3. 10 燃料搬出設備

3.10.1 燃料搬出設備の運転実績

燃料搬出設備は使用済燃料を再処理施設あるいは、破損燃料または試験のために検査施設に送る際にキャスクを「もんじゅ」施設内での運搬等に使用するものである。

使用済燃料の排出が行われていないことから、運転実績はないが平成6年10月に検査施設内（PIE）キャスクが完成し現地に搬入され、11月に燃料池で、そして平成7年2月に破損燃料の場合の燃料搬出設備との取り合い確認を実施した。

燃料搬出設備はキャスククレーン、燃料出入通路クレーン及びキャスク荷装置からなり、クレーン類は日常における重量物の移動に使用されている。

3.10.2 燃料搬出設備の保守実績

・平成6年度　キャスク装荷装置　動作確認

なお、キャスククレーン、燃料出入通路クレーンについては、労働安全衛生法クレーン規則に従った性能検査等の法定点検を実施している。

3.10.3 燃料搬出設備の運転、保守における特記事項

（1）PIEキャスク取合確認（H7年2月）

破損燃料をPIEキャスクに入れる場合は、燃料搬出設備とキャスク荷装置を使用して行うが、FPガスの漏出を防止するため燃料搬出設備とその容器パウンドリーを確保する必要があり、厳しい措置が要求される。また、崩壊熱を持っていることから円滑にキャスクへの受渡しを行う必要がある。このようなことから事前に取合及び受渡し機能を確認しておくことを目的に試験を実施した。

取合精度は満足することを確認した。受渡し機能については、現状の運転ソフトでは円滑な運転が行えず、ジャンパ、リフト等により対応して試験は終了したが、Heガス置換、キャスクプラグ取扱時本体Bドアバルブ開閉運転について実際に取り出しを行う前までに改造が必要なことが分かった。
3. 11 燃取系計算機システム

3.11.1 燃取系計算機システムの運転実績

燃取系計算機システムは「もんじゅ」の燃料取扱貯蔵設備の運転制御をつかさどるものので、これまで燃焼装置、出力分布試験、そして模擬体洗浄処理運転とフル稼働運転で使用している。

3.11.2 燃取系計算機システムの保守実績

平成５年度から毎年、年間を通しての保守点検を設計制作メーカーに発注し、3ヶ月、1年点検及び異常時オンコール契約により、健全性の維持を図っている。なお、同一メーカーの障害措置対応機器設備計算機も同時期に実施している。

・平成５年度：計算機ユニット冷却ファン全数交換

3.11.3 燃取系計算機システムの運転、保守における特記事項

（1）磁気ディスク装置動作不良（H 6年 4月）

CPU異常及びCPU電源異常により燃取計算機がトリップした。E V S Tの予熱制御を本計算機で行っていることから、制御できなくなりE V S T 1次補助N a系をドレンを実施した。原因はディスクの動作不良によるリードエラーであることが分かった。

新品の磁気ディスクに交換して燃取計算機を復旧した。
3. 12 共通保修設備

3.12.1 共通保修設備の運転実績

共通保修設備は機器移送設備と機器洗浄設備からなり、機器移送設備はメンテナンスクレーン、メンテナンス台車からなり、これまでSKS、燃料装荷及びパルプ試験等において、FHM、IVTM等の輸送やこれまでの点検時の点検機器の移動、分解部品の移動に使用している。

機器洗浄設備はポンプ洗浄設備、燃取機器洗浄設備からなっていたが、平成7年10月に2次系機器洗浄設備の搭付工事を完了し追加された。

ポンプ洗浄設備は1次系主循環ポンプを主に1次系機器を対象としているが、平成6年12月に水平型Na透視装置（USV）用ドアパルプを点検のため洗浄した。

2次系機器洗浄設備については、設備が完成した平成7年11月に小物機器洗浄槽で2次系Naサンプリングチューブを1回（Na量約2Kg）洗浄した。

燃取機器洗浄設備ではこれまで、FHM、IVTM、燃料出入機本体Aグリッパ及びドリップパン等延べ63回洗浄してきている。

燃取機器洗浄設備運転実績

<table>
<thead>
<tr>
<th>被洗浄体</th>
<th>洗浄回数</th>
<th>備考</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料交換装置（FHM）</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>炉内中継装置（IVTM）</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水平型Na透視装置（USV）</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>炉内流量計測装置（FMR）</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料出入機本体Aグリッパ</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料出入機本体Aドリップパン</td>
<td>21</td>
<td>延べ49個</td>
<td></td>
</tr>
<tr>
<td>炉外燃料貯蔵槽用プラグ</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>小物洗浄治具（1次系Naサンプリングチューブ）</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.12.2 共通保守設備の保守実績

- 平成5年度 真空ポンプ 分解点検
- 平成5年度 処理フランB 分解点検
- 平成6年度 燃焼機器洗浄槽循環ポンプ 分解点検
- 制御弁（2台） 分解点検
- 平成7年度 燃焼機器洗浄槽床ドア弁ループ 分解点検

3.12.3 共通保守設備の運転、保守における特記事項

（1）メンテナンス台車搭載用パイラ損耗（H4年12月）

EVSトドアバルブ移設作業時にメンテナンス台車を燃料出入機レール上に搭載しようとワイヤリングを実施していた時、メンテナンス台車搭載用パイラのジャッキ吊り部に肋縁（麻ロープ）がはみ出しているのを発見した。すぐに使用できない状態ではなかったことから、その後の作業は継続して実施した。しかしながら、重量物の運搬であり今後も引き続き作業があることから、労働災害防止の上から新品に交換することとした。これまで約2年の使用で今回のような状況になったことから、耐久性を考慮して、パイラ径をこれまでの30φから40φにすべきとした。

（2）平成5年度点検（H5年5月〜6月）

H5年度点検で処理フラン、真空ポンプを分解点検したが、真空ポンプ組立後の作動試験において反復運動軸受温度が上昇し判定基準（室温+40℃）を越えた。組立不良が原因と思われたことから、再度、分解し軸受を交換して組立、作動試験を行った。しかし、同じ事象となった。そこで原因を検討した、軸受間隙が小さいことによる摩擦熱による影響が考えられたことから、反復運動軸受を普通間隙からC3隙間のベアリングに変えて作動試験を行ったところ、軸受温度が判定値を満足し性能に問題ないことを確認した。
(3) 燃料出入機本体Aドリップパン複数体洗浄可能性確認（平成4年6月、10月）

ドリップパンの洗浄は1体づつ行うこととなっており、窒素ガス、蒸気等が多量に消費され不経済であるばかりでなく、洗浄時間が日勤ベースの運転で3日、昼夜連続でも2日かかるところから、燃焼設備の運転工程への影響が懸念され複数体洗浄をすることを考えた。2段積みしてもハンドリングヘッド部に僅かに隙間が生じることから洗浄の可能性はある。しかし、円筒状の洗浄洗浄槽内に設置して洗浄することから下のドリップパンへの蒸気の巻き込みが抑制されることから中間にスペーサを入れて洗浄してみることとしスペーサを製作し2体同時洗浄を実施した。その結果、2体共、洗浄及び乾燥が確実にできており、2体同時洗浄が可能なことが確認できた。

また、10月に実施したスペーサなしで洗浄でドリップパンに損傷があったことから、スペーサ治具を使用して再度2体洗浄を実施した。その結果、Na及び洗浄水の残留等はなく、良好な洗浄状態であった。また、変形、損傷等も認められなかった。

ドリップパン及びスペーサ（中央）を下図に示す。

(4) ドリップパン2体洗浄時のハンドリングヘッドの損傷（平成4年9月〜10月）

スペーサを間においての2体洗浄は良好な結果を得たが、現状の洗浄治具では寸法的な制約から2体までが限度である。スペーサなしで積み重ねれば4体までの洗浄が行える
る可能性があることから、スペースなしでの洗浄性を確認することとした。

そこで、先ず2体洗浄を試験してみることとした。ドリップパンの洗浄においては以前から、蒸発洗浄後の水洗浄時に水とNaが反応して水素爆発音を発することが観測されており、2体洗浄においては下側のドリップパンへの蒸気の圧力込みが抑制されるから、蒸気洗浄時間を長めにして行った。しかし水洗浄洗浄時に爆発音が観測された。洗浄後、取り出して観察したところ上側のドリップパンのハンドリングヘッド部のリングに荷重がかかって中間が下がったような変形が観察された。

もう1度2体洗浄して洗浄性を再確認することとした。そして洗浄したところ、水洗浄洗浄時に前により激しい音があり、更に間にいて金属音が観測された。水洗浄洗浄時の水素濃度が一時的に約3％まで上昇した。（通常1％以下）洗浄後、洗浄槽ドアバルブを開けて、取り出そうと構内に観いたところ、設置位置から約3m上の洗浄治具フランジ部に横転しているドリップパンを発見した。取り出してドリップパンを観察したところ、ハンドリングヘッド部が何かに当たって激しく変形しており、底部外表面にもフランジと当った打痕があった。このことから重ねた上のドリップパンがNa－水反応による爆発で洗浄治具のミサイル効果で約5～6m上のドアバルブまで飛び弁体に激突したことが分かった。その衝突によりハンドリングヘッドが変形したものをある。

このことから、ドリップパンの複数洗浄においては間にスペースが必要なことが明らかになった。

（5）本体Aドリップパン複数体洗浄性確認試験（平成5年5月）

複数体洗浄可能性確認の結果を反映して複数体洗浄を実機への導入をすることとして、その洗浄性確認試験を実施した。可能性確認で使用したスペースは軽いことから燃料出

入設備を使用しての移送運転ができないこと、そして長さが長く2体までしかできないことから、スペースの重量を約30Kgとして燃料出入機での吊り不吊り判定ができるようにし、重量を確保する最小の寸法で製作してドリップパン3体の洗浄性確認試験を実施することとした。第3.12-1図にD P 3体洗浄状態詳細図を示す。

また、スペースの移設も燃料出入設備を使用して行うこととして、グリッパ交換装置の点検蓋を取り出して円筒の容器を接続してスペース置場として、洗浄後のドリップパン等

の返還は本体Bで行うこととして、B用に新たにドリップパンアダプタを製作して本体A
及びBでの燃料検査槽、グリッパ交換装置、燃焼器洗浄槽及び地下台車の各機器との間での取扱い確認も合わせて実施することとした。

また、燃焼器洗浄設備においては、ドリッパの乾燥もこれまでは窒素ガスを加熱して行っていたが、洗浄後空気雰囲気に保管されることから窒素ガスを無駄に消費する必要がないことから室内空気を加熱して行う様に変更した。

試験の結果、3体洗浄が実施できることが確認できた。また、空気による乾燥でも窒素ガスと同様に乾燥でき、窒素ガスを節約できることが分かった。

燃料出入機による各設備間との取り合いは、運転シーケンスの変更が伴うことから、試験において手動操作等により実施し、取扱いの成立性を確認した。従って、今後、燃料出入設備運転ソフトの改造を行うこととした。

(6) 燃焼器洗浄槽小物洗浄治具破損（平成7年10月）

1次系及び燃焼系の放射性機器の点検時にボルト、ナット等の小物品の付着Nαを洗浄する場合を考慮して、燃焼器洗浄槽で洗浄が行えるよう小物洗浄治具を製作した。

これまでの性能試験において、出力試験で使用した油ヒータ、1次系Nαシールドチューブの付着Nαの洗浄の要求があり、小物洗浄治具に収納して洗浄した。これらの洗浄体は直径約10mmで内部にNαが詰まっており洗浄しにくい。そこで長さを10〜15cm程度に切断しており、湿潤洗浄時間についても通常の2倍位洗浄した。しかし、その後、水浸漬洗浄をしたところ、Nα水反応による音を観測（水素濃度約5％）した。全ての洗浄、乾燥工程を終了し、小物洗浄治具を取り出したところ、洗浄治具の金網に数ヶ所穴が開いているのが発見された。Nα—水反応により、チューブが飛んで金網に衝突し破損したものである。今後、洗浄治具、洗浄方法について再検討することとした。

(7) 2次系小型洗浄槽による2次系Nαシールドチューブ洗浄（平成7年11月）

小型洗浄槽に2次系Nαシールドチューブの切断片（約15Φ×15H）を約100本（Nα量として約2kg）を入れ洗浄したところ、湿潤洗浄において初め槽内が結露してNαと水の反応が現れ蒸し塩に目視と音が観測されたが、洗浄槽の温度が約60℃以上になると槽内が乾燥し約5時間経過しても水素濃度の変化がなくNα—水反応が進展しているのか分からなかった。そこで、内部が乾燥した状態では反応が行われない可能性があると推定
し、キャリアガス（窒素）の流量を約1/3に絞ってみたところ、再び槽内が結露し反応も再発した。その状態で約5時間運転し反応がなくなったので、浸漬洗浄に移った。
ところが、観察窓から内部を見ていたところ、水位が洗浄カゴの底板の上部に達したと同時に激しいNa－水反応が生じた。それから約10分後に水素濃度が約8%に達して高警報により設備の運転が停止した。

このことから、次回洗浄時は、

① 洗浄治具は円筒状底板と側板からなり、底板は穴が約20個開いている。側板はパラソル形で穴が多数にあっており、蒸気は側板をほとんど通過しているように見えることから、底板の穴の数を増やす。

② 湿潤洗浄においては槽内が常に結露した状態を保つような運転を行う。

措置を行って、再度、2次系Naキャリヤー型洗浄を実施し洗浄性の確認を行っていく。

今回の洗浄運転で水素濃度監視機能が不十分なことが分かった。今後の設備改善項目とする。

（8）燃焼機器洗浄槽床ドアパルプ分解点検不具合（H8年3月）

ドアパルプを取り外して、上フランジを取り除いたところケーシング内に弁体台車車輪を取り止めキープレートが1個とプレート固定用ボルトが6本落ちていた。キープレートについては昨年10月頃でもドアパルプ内部に1個落ちていた。固定用ボルトについては全て首近傍で破断していた。再び分解を進めると台車車軸4本のうち3本に車軸軸受との接触によるカジリが確認された。

本ドアパルプは、平成2年11月に販売、これまでに約250回の開閉を行っている。また、使用中的ドアパルプ内の雰囲気は蒸気等により、湿度が高い状態になっている。

このような使用条件を考慮して、軸受はスペリ軸受を採用している。今回のカジリの原因を調査した結果、軸受メタルの隙間が小さいために、磨耗した粉末が除去されないで車軸軸と固着し車軸軸と車輪が回りやすいことによるものと推定される。

対策としては、軸受メタルの隙間を若干(解析結果 推奨値)拡げることで車軸軸との固着は防止できると判断した。キープレートについても材質をSUS304からSUS630に変更した。以上の対策で再発は防止できると判断するが、使用条件等を考慮して次回は4年後位に分解し、健全性及び状況の確認を行う。
3. 13 固体廃棄物貯蔵プール設備

3.13.1 固体廃棄物貯蔵プール設備の運転実績

固体廃棄物貯蔵プール設備は制御棒駆動装置上部案内管等の高放射化した固体廃棄物をプール水中で貯蔵するものである。

S K S以降、固体廃棄物の受入れはないが、プールに水を張った状態で水質を保持するため系統の運転を続けてきている。

プール水循環ポンプが1台でフル稼働しており、これまでH 5年、H 6年と続けて循環ポンプの分解点検を実施している。

3.13.2 固体廃棄物貯蔵プール設備の保守実績

・平成5年度 循環ポンプ 分解点検
・平成6年度 循環ポンプ 分解点検
・平成7年度 ろ過器 開放点検

流量制御弁（1台） 分解点検

3.13.3 固体廃棄物貯蔵プール設備の運転、保守における特記事項

（1）ろ過器平板止めナットのかじり（H 5年 6月）

フィルタエレメントを新品に交換し、平板止めボルト・ナット10本内の1本がきつくって締められない状態（ボルト・ナットのかじり）になった。取り合えず9本で止めて運転を行っていたが、その後のフィルタエレメント交換時にももう1本にかじりが生じたことから、H 7年度点検でボルト交換等を行うこととした。

（2）ろ過器フィルタエレメント水中落下（H 5年 6月）

使用済のフィルタカートリッジは将来は、固体廃棄物貯蔵プール内の所定のラック内に収納、保管するが、現状は放射化されていないことから、回収してフィルタエレメントのみ交換してカートリッジは再使用している。今回、フィルタエレメントを新品に交換する際に、ワイヤでカートリッジを吊って引き上げるが誤ってフックが外れプール底部に落下させてしまった。なんとか回収したが、今後も交換作業があることから吊具等の変更を含め作業方法を見直す必要がある。
（3）ろ過器フィルタエレメントのメッシュ変更（H5年10月）

ろ過器は、プール水中の懸濁固形分、腐食生成物をろ過除去し、固体廃棄物のプールへの貯蔵作業に支障がない程度にプール水の水質を維持するもので、縦設置円筒カートリッジ形式で使用済のフィルタエレメントをプール中に廃棄する際のしゃべい対策を容易にするためプールの水中に設置されている。

フィルタエレメントメッシュは5μmを使用しているが、プール水中に貯蔵物がないのに僅か半年程度で差圧が規定値（1.5kg/cm²）に達した。設計上は差圧が規定値になるか、または3年間の使用のうち短い期間内に交換することとなっている。しかし、現状は半年程度での交換となっており、以前にもあったことから、固体廃棄物が入っていないことも考慮し、メッシュサイズを10μのエレメントに変えて交換頻度を長くし、水質への影響等を確認することとした。

その結果、変更後、約10ヶ月後に差圧が規定値に達したことから交換した。その後、約1年以上経過したH8年2月にH7年度点検でろ過器を点検した際に、エレメントの外観目視を行ったが若干の汚れが確認された程度だった。再使用しても問題ないとのことであったが、1年以上使用してきたので新品に交換した。

このように交換時期が徐々に延びる傾向にある。これは建設直後の建物内の塵、埃等がプール水に入り、プール水の初期の汚れが固廃プール設備の運転により、ろ過器で除去されプール水が清浄になってきているものと推察される。次回交換が更に延びるようであれば、設計通りの5μmのエレメントに復旧する検討している。

（3）平成7年度点検（H8年2月）

①ろ過器開封点検

ろ過器平板止めナットにかじりが生じていたことから点検を行った。その結果、3本にかじりが発見された。原因はボルトとナットが同材質（SUS 304）であり、フィルタ交換のために頻繁にボルトの締め、緩めを行うが水中にあることからモリコート等の防食防止剤の塗布ができないことから、表面に肌あれが生じかじりに至ったものと推察される。第3.13-1図にろ過器構造図を示す。

かじりは、軟質の材料が起きやすくSUS304は一般的に焼き付きやすい材料といわ
れている。焼付防止の方法としては、①硬度の異なる組合せ ②表面をクロム等の硬質の材料で硬化処理 ③焼付防止剤を塗布等が一般には行われる。
　ろ過器が水中に入り、水の汚れ等から③は採用できない。①が②の選択になるが、ナットの材質を硬度の高いSUS304に変更することとした。

② ポンプ出口流量制御弁（CV5）分解点検
　ポンプ出口流量制御弁は以前から異音がしていたことから、今回点検した。異音の原因は弁の応答制御性をよくするために設置しているブースタリレーからのもので問題ないことが分かった。しかし、分解の結果、弁体及びシールリング部に僅かに腐食が観察された。原因ははっきりしないがステライト盛りをしている母材との境界付近に発生していた。他のステライト盛りをしている弁（V26）も分解し、調査したが腐食は確認されなかった。調査の結果、本弁製造メーカー独自の現象らしく、他プラントにおいても同様な現象を経験していることが分かった。シート面に腐食がなく腐食量も僅かなことから機能上問題ないことからそのまま組み立てた。但し、今後（5年後頃）再度点検して状況により、材質変更、部品交換等が必要になるものと思われる。
3．14 その他関連設備

3.14.1 原子炉機器輸送ケーシング等の取扱、保守における特記事項

原子炉機器輸送ケーシング（AHM）、プラグ取扱機（PHM）は燃料交換時にFMH、IVTMを据付及び取り外しの際に使用するもので、原子炉機器輸送ケーシングは内部にFMH、IVTMを収納し内部をアルゴンガスに置換して、しゃべいプラグに接続し原子炉カバーガスバウンダリを構成してFMH、IVTMを炉内へ挿入する。

プラグ取扱機はFMH、IVTMを据え付ける際に、しゃべいプラグの据付位置に通常しゃべいのためのプラグが設置されており、その取り外し及びFMH等撤去時に取付を行うものである。

これまでの実績は以下に示す。

- H5年 4～8月 炉内流量分布予備試験 流量計測装置撤去
- H5年 4～8月 流量分布予備試験終了 流量計測装置撤去
- H5年 7～8月 燃料装荷準備 PHM、IVTM撤去
- 11～12月 炉内流量分布試験(1) PHM 撤去、流量計測装置撤去
- H6年 1月 外側燃料装荷準備 流量計測装置撤去、FMH 取付
- 9～10月 炉内流量分布試験(2) FMH、IVTM撤去、流量計測装置撤去
- 11月 流量分布試験(2)終了 流量計測装置撤去

（1）原子炉機器輸送ケーシング用ケーブル断線（H5年4月～6月）

炉内流速分布試験のため流量計測装置（FMR）を炉内に設置するため、M／B燃料交換機器置場において、AHM内にFMRを収納する前にAHM単独でグリッパ動作確認中、グリッパ着床条件が成立しなかった。そこでケーブル、コネクタ等を調査したところ、ケーブルが計3本断線していることが分かった。応急措置により仮接続してFMRを炉内へ設置した。その後、断線の原因を調査したところケーブルに振れがみられ、ケーブル内電線にシクシクが発生し一部断線が確認されたことから、断線的原因はシクシクによるものと判断した。AHMはM／B及びR／Bを移動して取り扱うがケーブルも移動することとなる。ケーブル長さは約20～50mあり、使用の都度延ばしたり、丸めて保管する作業を繰り返しており、ケーブル引き出し時の取扱に問題があったものと思われる。
対策として、全てのケーブルを新しく配することと考え、ケーブルにストレートマーク入キャプタイヤケーブルとし延線時に捲じれないことを確認し易くする。また、引き出し時に捲じれにくいよう保管時には8の字取りで収納することとした。

3.14.2 原子炉格納容器機器ハッチ開閉における特記事項

機器ハッチは原子炉運転中は閉止して原子炉格納容器バウンデリを構成するが、原子炉停止して燃料交換を行う際は、燃料交換のために燃料出入設備の炉上部とE V S T間を移動する通路となる。従って機器ハッチの開閉は燃料交換の都度行うこととなるが、燃料装荷及び出力分布試験においては、試験のために原子炉の起動をする必要があり、40回（20燃焼分）もの開閉作業を行った。

ハッチは重量物であることから格納容器に1型鋼を取り付け、トロリに吊り下げである。開閉時の動きはトロリを水平に移動することにより行う。

（1）ハッチ移動用トロリローラ破損（H6年5～6月）

出力分布試験において、ハッチを開けるため両ねじボルトを外して、ハッチの移動を開始し約半開のところでトロリのローラ4個のうち1個が破損して床上に落下した。幸い作業員に当たらず怪我はなかった。半開の状態で放置できないので他のローラの状態を確認してゆっくり全開にした。機器ハッチは性能試験になってから14回開閉していった。

現場調査の結果、内側のローラ残り3個共、破損、クラック等が確認された。

ローラ破損の原因は、連結板のボルト穴加工が設計図面通りにされていなかったことから、全ローラ（8個）に蓋荷重（28t）が分散されずに、内側4個のローラのみに蓋荷重がかかった状態でこれまで移動が行われていたことによる。

対策はトロリと連結板とのボルト2本による接続を1本に変更して全ローラで蓋荷重を受ける構造とし、ローラを新品に交換した。

第3.14-1図に分解点検結果、第3.14-2図に連結板・トロリ接続ボル・処置対策図、第3.14-3図にトロリと連結板の接続図を示す。
第3.14-1図 分解点検結果
第3.14-2図 連接板・トロリ接続ボルト処置対策図
連結板（ミゾ型鋼）

ローラ

ローラピン（ボルト）

ボルト

トロリ

ボルト穴位置が正規位置の場合
（ローラは4個ともレールに接している）

蓋の重量

ボルト穴位置を間違えた今回の場合
（外側ローラが浮き上がっている）

第3.14-3図 トロリと連結板の接続図
3. 15 設備改善等

総合機能試験を通じて、現状の設備で機能、性能上問題がないことは確認されている
が、現状の設備では、労働安全、工程、経費及び信頼性向上等の観点から設備改造を行
った方が良いと判断し、ドラブル対応とは別にこれまで設備改善を図ってきている。

改善を実施した主要なものを以下に示す。

(1) 炉外燃料貯蔵槽床ドアバブルの6連化
(2) ドアバブルガス置換系第二真空ポンプの追加
(3) 新燃料方位調整装置設置
(4) 燃取ITV及び無線通話装置の設置
(5) 燃料容器用ジブクレーン及びホイストの昇降速度変更
(6) ドリップパン複数洗浄化
(7) レールブリッジ取付、取外し作業時間短縮のための改造
(8) 停止防止対策
(9) 新燃料移送時間の短縮化
(10) 二次系機器洗浄設備
(11) 仮話缶の追加製作

3.15.1 設備改善等の内容

（1）炉外燃料貯蔵槽床ドアバブルの6連化（平成3年～平成7年7月）

炉外燃料貯蔵槽床ドアバブルは設計当初（1979年頃）、6連式床ドアバブルとな
っていた。しかし、その後のメーカー発注段階で「もんじゅ」全体の建設コストを削減す
る必要が生じ、その調整の1つとして単式のドアバブルが提案され、燃料交換期間につ
いても1ヶ月間に収まるとの評価結果を得、単式のドアバブルとなった経緯がある。

しかしながら、単式のドアバブルは炉外燃料貯蔵槽案内筒の各列（6列）にクレーン
等を使用して移動しなければならないことから、総合機能試験を通じて設計段階では予
測出来なかった様々な問題点があることが分かれ、移設作業を伴わない設置型6連式ド
アバブルへの設備改造の必要性が認識されるようになった。

第3.15-1図に旧設計6連式ドアバブル、第3.15-2図に単式床ドアバブルを示す。
第3.15-1図 旧設計6連式床ドアバルブ（ゲート弁式）概略図

断面A－A

[詳細な図面内容]
「もんじゅ」床ドアバルブ
"Monju" FLOOR VALVE
(1-1) 単式ドアバルブの移設作業の概要

炉外燃料貯蔵槽（以下「EVST」）は同系6列の回転式貯蔵ラックにより、新燃料及び使用済燃料等を250体貯蔵できる。燃料等の取扱には、6箇の案内筒に対しドアバルブが1基しかないため移設しなければならない。ドアバルブの移設は燃料交換時に4〜5回、燃料処理時（新燃料EVST移送、使用済燃料の洗浄・缶詰等）に4〜5回でそれぞれ1年間に2回行うことから年間約20回移設作業を行うこととなる。

移設作業はドアバルブ（13トン）、プラグ取扱機（18トン）、プラグ置場（15トン）、運搬架台（3トン）、メンテナンス台車（35トン）2台等の大型重量物をクレーンを使用して行わなければならない。プラグ取扱機は、案内筒内のしゃべいプラグ、シールプラグを引き抜いて燃料等の通路を確保する。また、燃料移送後はドアバルブ移設前にプラグを挿入してしゃべいとEVSTが通路伝達を確保する。従ってドアバルブ移設作業は、プラグ取扱機等を頻繁に移動する必要があり、これまで29回の移設作業を行っている。

第3.15-3図にドアバルブ移設作業手順、第3.15-1表に単式床ドアバルブ利用年表を示す。

(1-2) ドアバルブ移設作業に伴う問題点

① 単式ドアバルブに設計上（燃料取扱性）の問題はないが、重量物の移動を行うことから、多くの日数と熟練した作業員（約10名）が必要となり、多くの経費がかかる。
② 一回の移設作業に2〜3日かかり、年間で約48日移設作業に費やされることとなり発電施設の運転計画に及ぼす影響が大きい。
③ 狭隘な場所で重量物を頻繁に移動することから、作業員の労働災害の危険性が大き
④ 使用済燃料を貯蔵するEVSTの上部での作業であることから、作業員の放射線被ばく

(5) ドアバルブはEVSTのバウンダリを形成する重要な機器であるが、移動及びプラグ取扱機上架時のクレーン操作のミス等により、ドアバルブに損傷を与えるおそれがある
(6) 近年の社会的傾向として、労働者が現場作業を敬遠するようになってきている。

この傾向は今後益々顕著になるものと思われる。熟練技能者を継続して確保することが今後困難になってくる。
第3.15-3図 ドアバルブ移設作業手順

①メンテナンス台車組立

②プラグ設置。プラグ取扱機の設入

③プラグ設置。プラグ取扱機の設置

④運搬プラグ及びシールプラグの設入

⑤運搬プラグ及びシールプラグの設入

⑥単式床ドアバルブの設付及び付属品の取付け
第3.15-1表 炉外燃料貯蔵槽 単式床ドアバルブ利用年表

<table>
<thead>
<tr>
<th>平成3年</th>
<th>平成4年</th>
<th>平成5年</th>
<th>平成6年</th>
<th>平成7年</th>
</tr>
</thead>
<tbody>
<tr>
<td>1列</td>
<td>2列</td>
<td>3列</td>
<td>4列</td>
<td>5列</td>
</tr>
</tbody>
</table>

1列：
- 1月
- 竣工
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

2列：
- 2月
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

3列：
- 3月
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

4列：
- 4月
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

5列：
- 5月
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

6列：
- 6月
- 積載開始
- 燃料取扱
- 排入
- 取出
- 合計

*：平成3年の床174Fd 移設作業等により 各種不明
(1-3)改造による効果

前記の問題点を解決できる。即ち、
① 移動に伴う経費を大幅に節減できる。
② 作業員の負担がなくなり、作業安全性が確保できる。
③ 機器の損傷の危険性がなくなり、設備としての安全性が確保できる。
④ ドアバルブ移設がなくなることにより、作業工程が短縮される。特に燃料交換工程は、設計上は30日となっているが、その前提条件として燃料機器を着付、撤去する現場作業を実施約24時間/日としており、SKSの実績から作業員の確保が困難なことが明らかになっており、今後の運転においては実質困難である。

現実的な作業時間約10時間/日で燃交機器の着付、撤去した場合に燃交期間が約48日かかるということになり、これを6連式ドアバルブに改造することにより約10日短縮できる。燃交期間は運転工程のクリティカルパスであることから、設計上の日数に近づくことにより、運転計画への裕度が生まれる。

第3.15-4図に燃料交換作業工程の比較検討結果を示す。

(1-4)改造の内容

① 各案内筒にそれぞれドアバルブを設けた取付型の6連式ドアバルブとする。
② 単式ドアバルブと同じ型式（ゲート式）では着付スペースが多く必要となり、配置上収まらないことから、形状を小型化できる弁体回転式にする。

(1-5)改造の経過

改造については、改造規模が比較的大きいため工期及び経費がかかりることと設計変更等の許認可申請手続きが必要になることから、数年間で行うことが計画した。

① 基本設計（H4年10月～H5年3月）

まず、平成4年度に基本設計を実施し、ドアバルブの6連化が可能かどうかの成立性について検討した。検討結果は設置スペースに制約があることからゲート式を弁体回転式にするようにし、建設の耐震強度への影響についても検討した結果、強度に与える影響は小さいとの結論を得た。

6連化することにより、前述した問題点が解決されることから、建設所として改造を推進することが決定された。
第3.15-4図 燃料交換作業工程の比較検討結果

| 日 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
| 1) 旧設計（製作標準設計の2～3化設計）における6連式床倉庫と単式床倉庫の作業工程（案）

6連式床	D/V	
(製作標準設計の2		S 55, 11)
燃料交換準備**		燃料交換**
燃料交換**		燃料交換**
燃料交換**		燃料交換**
燃料交換後始末**		
4.5日	4.0日	4.5日

単式床	D/V	
(合理化設計	S 55, 5)	
燃料交換準備**		燃料交換**
燃料交換**		燃料交換**
燃料交換**		燃料交換**
燃料交換後始末**		
4.5日	3日	1

(1) 6連式から単式に変更したことによる燃料交換の全体作業工程は変更していない。

2) 臨界試験後における6連式床倉庫と単式床倉庫の作業工程

| 6連式床 | D/V |
| (H.T.1運用開始) |
| 燃料交換準備** |
| 燃料交換** |
| 燃料交換** |
| 燃料交換後始末** |
| 11.5日 | 3.5日 | 3.5日 | 3日 | 5日 |

| 10.5日 |

| 10日間の燃料交換作業の短縮 |
| 10.5日 |

(1) 6連式に変更したことにより、40日/年×5人/日=360人日/年の削減効果がある。（1日の燃料交換に要するドアルクの移動日数は①プラグ置場作業準備2日、②ドアルクの移設（2日/日×3回）6日、③プラグ置場作業後始末2日）の合計18日（6連式にしたことによる移設日数10日間の燃料交換作業の短縮）である。従って、1年間では40日（10日×4回（燃料交換2回/年、燃料処理2回/年））となる。また、作業作業には9人/日がかかる。)
② 官庁手続き（H5年10月～H6年5月）

平成5年度は、所轄官庁への折衝を開始した。まず、行政側の疑問は、「現状の設備で運転できているのなら、今、変更申請をしてまで改造することはないのではないか？運転開始して使用前検査合格した後に行えばよいのではないか」との指摘があった。

これに対し、「運転開始後、ドアバルブ改造を行うと現地工事に約3か月かかり、その間燃料等の移送が行えないことから、「もんじゅ」の運転を改造のためにその間停止せざるを得なくなり、結局、改造そのものを見送らざるを得なくなるおそれがある。今現在、性能試験期間中に行えば運転開始までに改造を終えることができる。そうすれば、その間は燃料交換が計画されていないことから、全く運転計画に影響を与えることはなく、運転開始後の燃料交換において6連化のメリットを十分発揮できる。従ってこの改造は運転開始前の今の時期が最も良いと判断している。」旨説明し理解を得た。

もう一つの疑問としては、「原子炉運転中にこの改造を行うことは安全上問題ないか？」ということだった。何らかの原因で全炉心退避をする必要が生じた場合に燃料池へのアクセスルートがなくなるのではないか？ということで、これについては、全炉心退避が必要になる事象としては、燃料破損等が想定されるが、炉心に保持しておくことにより、冷却と閉じ込めの機能を保つことができることから、早急に炉外に出す必要はなく、炉内に保持しておくことが最も安全である旨説明した。但し、万一、何らかの要因で炉心から燃料等を取り出す必要が生じた場合を考慮し、燃料検査槽を経由して取り出すようルートの確保はできていることを説明して丁寧を得た。

工事認可変更申請が必要か、通産省資源エネルギー庁発電課に説明した。改造規模からは必要との判断があったが、現状のドアバルブについて工認本文に記載がないことから、変更する6連ドアバルブだけ記載して変更すると、他の設備のドアバルブとの整合が図れないことになることから変更申請は不要となった。しかしながら、EVSTがGAMAIYUARを構成することから、単式ドアバルブはイ項検査として耐圧、外観及び銘打検査を受検済みであり、また、八項検査として系統運転性能試験を受検済みであり、6連ドアバルブに変更後、工認変更していないければ、何にもとづいてそれらの検査を再受検すればよいかということになった。単式ドアバルブの検査についても工認本文に基づくものではなく、使用前検査要領書の段階で指導により加えたものであることから、6連ドアバルブについては、再受検についてお願いの文書を動燃が発電課に提出することで、富山支局
及び本省内の合議を発電課で実施していただくこととなった。
これらの調整に約半年費やされたが、平成6年3月設計及び工事の変更認可申請を実施し、5月に認可を受けた。
③ 製作設計及び材料の一一部先行手配（H5年10月～H6年3月）
④設計の概要
・型式：一体型6連式ドアバルブ
・燃料等の通路形成：従来の水平移動方式から回転移動方式に変更
・バウンダリー形成：従来のドアバルブと同様にシールフランジの開閉による。
・燃料からの放射線しゃべい：従来のドアバルブと同様に構造材（炭素鋼、ステンレス鋼）とポリエチレンにより行う。
・燃料出入機との放射線しゃべい：接続部構造を移動式とした。（可動タイプシリン）
・EVST案内筒間接冷却流路形成：昇降リングを空気圧シリンで動作させる。
第3.15-5図にEVST連式ドアバルブ、第3.15-6図に回転移動方式弁体、第3.15-7図に燃料出入機との接続部（従来）、第3.15-8図に燃料出入機との接続部（6連式）、第3.15-9図に間接冷却流路形成を示す。　
設工認変更認可を受けて、製作設計及びケーシング等の大型鋳造部材の購入について平成5年度に実施した。　
ケーシングは、単式ドアバルブはステンレス鋼製品であったが、コストを考慮して、6連では炭素鋼鋳鉄品とした。材料に炭素鋼を使用する場合には、最低使用温度が重要となる。これは低温での脆性破壊に対する強度を確認しなければならないことが技術基準で定められている。ドアバルブの最低使用温度は、当初、炉上部にあるしゃべいプラグと同じ10℃としていたが、格納容器内に比べ燃料出入通路はメンテナンス建物と繋がっており、冬季にかなり温度が下がることが、SKSを通じて判っており、据付位置についてもしゃべいプラグは炉内のNα液面のすぐ上に設置されているが、EVSTドアバルブはEVST内のNα液面から約8m上部に設置することから、ほとんどNα温度の影響を受けることがなく、室温に左右される。従って、6連ドアバルブはしゃべいプラグに比べて温度が低くなることが考えられることから、最低使用温度を5℃に変更した。
製作設計においては、弁体回転式に伴いシールフランジのセルフロック機構も直線移
動から回転移動になる。それにより上フランジとの接触力が不均一になることの確認のためモックアップを製作して耐久試験及びシール性について試験した。

④ 工場製作（H6年7月〜H7年3月）

平成6年度に工場製作を行った。製作設計を前年度に実施したが、各部品の製作図の作成等製作設計の実質は工場製作をしながら行った感じだった。

工場での組立後の機能試験は年度末までかかり、製作完了が納期ギリギリであった。

⑤ 現地据付工事（H7年4月〜7月）

設工認申請時点での工事計画は、出力40%試験中の原子炉停止期間に据付、溶接工事等プラント運転に支障を及ぼすおそれのある作業を実施することとしていたが、工場製作段階で性能試験途中の平成7年7月頃燃料交換を行う可能性もあるとの、水面下での情報があり、6連ドアバルブの工事時期について色々検討したが、2月に水蒸気系フラッシュタンクのトラブルが発生し、その対策工事のために5月まで原子炉停止することとなり、それに合わせて6連ドアバルブの工事も行うことで調整がついた。5月末で機械、電気工事を終え、単体機能試験、総合機能試験、官庁立会検査等を実施して7月初めに工事を完了した。

機能試験において、ドアバルブ移設に相当する可動アダプタフランジの移動時間を測定したところ、最長のドアバルブ間（E〜F列）において約4分間で移動が完了した。

これは、単式ドアバルブ移設時間に比べ約1500〜2000分の1であり、大幅な時間短縮が図られた。

第3.15-2表にBVST床ドアバルブ（6連式）据付工事工程表を示す。
完成後の効果の実証

7月完成後の直後にプランケット燃料34体のEVST移送、8月から11月にかけて模擬体の洗浄処理のためにEVSTから144体の取出、その後、新燃料24体のEVST移送運転を行った。この間延べ7列を使用し、約200体を取り扱ったが、ドアバルブに関するトラブルはなく、可動アダブタフランジの移動時間も運転時間にほとんど影響を与えなかった。

改造前の単式ドアバルブであれば、約20日余計にかかっていたこととなり、工程上大きな効果があったことが実証された。なお、工程のみならず、労力低減、労働安全において格段の向上が図られ、当初の目的どおりの改善効果が得られた。

第3.15-3表に炉外燃料貯蔵槽6連式ドアバルブ使用実績を示す。

単式ドアバルブの燃料切離装置用ドアバルブへの転用（H8年3月）

6連式ドアバルブに改造する計画段階で単式ドアバルブの転用について検討しており、結論として燃料切離装置用ドアバルブへの転用が可能なことが分かっていた。

燃料切離装置用ドアバルブへの転用に向けて、H6年度に炉内検査孔閉止フランジ及び燃料切離装置固定フランジと取り合って所定の据付位置に燃料切離装置が設定できるよう上及び下アダブタフランジを製作している。H8年度に6連式ドアバルブへの改造を完了したことから、取り外し単式ドアバルブを燃料切離装置用ドアバルブとして使用できるように、しゃべい体を削るとともに駆動装置を取り外して手動操作とし、外形寸法をコンパクトにして据付位置に収まるよう改造した。
EVST6連式ドアバルブ
EX-VEssel FUEL Storage Tank 6-CONNECT Type Door-Valve
断面A-A

オーバラン防止用ストッパ

（可動アダプタフランジ）

炉心構成要素通過口

フランジ

弁体

ケーシング

カサ歯車

中性子しゃべい体

クロスローラ
ベアリング

第3.15-6図 回転移動方式弁体
第3.15-7図 燃料出入機との接続部（従来）
第3.15-8図 燃料出入機との接続部（6連式）
第3.15-9図　間接冷却流路形成
第3.15-2表 E V S T床ドアバルブ（6連式）取付工事工程表（2/2）

<table>
<thead>
<tr>
<th>REV. 3</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 6連ドアバルブ取付工事（概要）

2. 電気・排熱工事

3. 設備工事
第3.15-3表 炉外燃料貯蔵槽 6連式ドアバルブ使用実績

<table>
<thead>
<tr>
<th>列</th>
<th>平成7年（6連化以降）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>搬入</td>
<td>搬出</td>
</tr>
<tr>
<td>A列</td>
<td>新燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>B列</td>
<td>新燃料</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>C列</td>
<td>新燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>D列</td>
<td>新燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>E列</td>
<td>新燃料</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>F列</td>
<td>新燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>使用済燃料</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>（模擬体）</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>58</td>
<td>139</td>
</tr>
</tbody>
</table>
（2）ドアバルブガス置換系第二真空ポンプの追加（H 6年9月～11月）

ドアバルブガス置換系は燃料出入機が床設備に接続して燃料等を受渡しする際に、

① 空気を燃料出入機本体A、炉外燃料貯蔵槽内へ持ち込まない。

（系内のナトリウムと空気との反応防止）

② 原子炉容器、炉外燃料貯蔵槽及び燃料洗浄等における放射性ガスの作業エリアへの

の放出防止（作業環境の放射性物質による汚染並びに汚染拡大防止）

を主な目的に、燃料出入機と床設備側ドアバルブ間を接続時及び切離し時にガス置換す

る。

床設備は、7ケ所あり、燃料交換及び燃料処理貯蔵運転で燃料出入機は、ほぼ1年間

フル稼働の状態になる。それに伴いドアバルブガス置換系の真空ポンプもフル稼働する

が、真空ポンプは1台しか設置されていなかった。稼働状況とポンプの異常により停止

した場合の影響を考慮し、もう1台追加することとした。

追加するにあたっては、原子炉等規制法に基づく設工認申請書の本文記載事項ではないが、添付図面の系統図に真空ポンプが記載されることはから設工認の変更認可が必要と指導があった。幸い炉外燃料貯蔵槽床ドアバルブ（6 連化）の改造計画があったこ

とから、その設工認の変更認可申請時に合わせて申請した。

追加の変更工事は、平成6年度設備点検時に行った。その後の模擬体洗浄処理運転で

使用を開始しており、ドアバルブガス置換系の信頼性が向上した。
（3）新燃料方位調整装置の設置（平成3年10月～平成4年7月）【特許申請済】

SKSの燃料交換装置大気中試験時に制御棒集合体の交換試験を行った際、制御棒集合体が挿入途中で荷重超過により燃料交換装置（以下FHMと記載する）の下降が停止した。原因は集合体のセルフオリエンテーション機構（以下S/Oと記載する）の機能が働かず、制御棒集合体の六角形の頂点が周囲の集合体の面と接触し、バッドオリエンテーションも機能しなくて挿入抵抗が上昇し停止に至ったものであった。

第3.15-10 図にセルフオリエンテーション機能を示す。

SKSのS/O試験においても集合体の挿入角度が20〜45°の範囲は機能しにくいことが確認されており、その範囲の角度で挿入されたものと思われる。現状の設備は、集合体がいかなる角度で挿入されても、集合体のS/O機能により集合体が回転し円滑に挿入されるものとして、設計、製作されていることから、集合体の挿入前の角度がどうなっているか判らない。S/O機構については、大洗工学センターでR&Dを行ってその機能を確認していたが、試験条件が今の炉心の状態と異なっていたとのことである。

また、R&Dにおいても必ずしもS/Oが働かない場合もあるとのことであった。R&D時は周囲の集合体が拘束された状態で行っていた。それに対し、炉内の今のが状態は、原子炉運転を行えばスアリング等により集合体に曲がり（変形）が生じ、集合体の挿入、引き抜きの抵抗が増すことを考慮して、集合体間がルーズな状態になっており、周囲の集合体が外へ広がることからS/Oは機能しにくくなっている。

しかしながら、集合体の挿入ができないと「もんじゅ」の運転ができなくなることから、S/Oの機能に期待しつつも、万一、機能しない場合の対策を検討した。その一つはFHM側で、次の対応を行うこととした。

① 新燃料の装荷を安全に行うため、低速挿入領域を拡大し、新燃料の下部バッドが周囲の燃料の中間バッドを通ることを通過する範囲について低速挿入する。

② 燃料交換装置昇降荷重監視により、S/O挿入異常を検知し、過度の押し込み力が加わらないようにした。

③ 挿入異常が発生した場合の対処

・何度か挿入、引き抜きを繰り返す。

・回転プラグ、FHMをもう一方のアドレス（旋回方向を変える）で挿入する場合の予回転角度を約30度となれば、別アドレスで旋回させ、挿入を試みる。
第3-15-10 図 セルフオリエンテーション機能
・それでも挿入不可の場合は、集合体を炉内ラック（R3, R8）へ一担装荷して、
別アドレスでつかみ直すことで、約30度の回転を与えて再挿入を試みる。

もう一つの対応として、新燃料等をEVSへ移送する際に、炉心への装荷位置をあらか
じめ決め、挿入が円滑に行えるよう装荷位置に対応した予角度を与えて移送することと
した。その予角度を与える装置が新燃料方位調整装置である。しかしながら、EVS～炉
心間は燃料移送ボットで運ばれるが、そこでは集合体の球面座ではなくエントランスノ
ズルの下端で集合体の荷重を受け続けることになり、ポット内で集合体が崩れ、予角度にズ
レが生じ挿入時に支障をきたすおそれがあることから、あらかじめ台車で設定した
角度が炉心挿入時にどの位ずれるか試験を行った。その結果、ずれ角度は最大12°で概
ね5°程度であり、角度を設定することで円滑に挿入できる見通しを得た。

集合体の方位設定方法を検討したところ、新燃料移送機グリッパに回転機構があるこ
とから、地下台車に受渡しする前に行うことが、設備的に合理的と判断した。

新燃料移送機グリッパはワイヤーロープで昇降することから、昇降に伴って回転すること
と、そして振ることによりズレが生じることから、グリッパの回転、振れを止めさせるた
めグリッパにキーを、地下台車案内管にキー溝を設置することとした。集合体の角度検
出には非接触により面間寸法を検出することにより行うレーザ法を採用した。キー、キ
ー溝等のギャップの誤差も含めて新燃料方位調整装置の地下台車へ受渡す際の角度設定
精度を±5°とした。

新燃料方位調整装置は新炉心構成要素をEVSへ移送する際、新燃料移送機から地
下台車へ受け渡す前に新炉心構成要素の角度を検出し、新燃料移送機グリッパの回転機
能を使用することにより、燃料交換装置側からの指定角度に方位調整するものである。

新燃料方位調整装置は、案内管、角度設定確認装置及び新燃料移送機グリッパガイド
キーより構成される。案内管は新燃料移送機グリッパの昇降をガイドするとともに、新
炉心構成要素を指定角度に回転させる際に新燃料移送機グリッパ本体の回転を拘束する
ためのものである。角度設定装置は新炉心構成要素の方位を検出する装置であり、回転
歯車駆動モータ、回転歯車、回転歯車回転位置検出器及び新炉心構成要素の上部バッド
部2面間寸法を測定する2対のレーザセンサより構成される。グリッパガイドキーは案
内管内において新炉心構成要素を指定角度に回転させる際に、新燃料移送機グリッパ本

-256-
体の回転及び振れを制限するためのものである。

第3.15-11 図に新燃料方位調整治具機器外形図を示す。

新燃料方位調整装置による新炉心構成要素の指定角度への方位設定は、新炉心構成要素を新燃料移送機により地下台車へ吊り下ろす際に、角度設定確認装置の2対のレーザーセンサ及び回転歯車の回転により、上部バッド部の2面間寸法を検出、測定し、この時の回転歯車角度と予め新燃料移送機位置決め用TUVにより確認しておいた新燃料貯蔵ラック内での方位から、初期方位を演算する。次に指定角度と初期角度の偏差から新炉心構成要素の回転角度を演算し、回転歯車を回転させレーザーセンサを方位設定位置とし、新燃料移送機グリッパを回転、停止させることにより方位設定を行う。

これら一連の運転は燃焼操作台から遠隔自動で行われ、演算及び運転監視は燃料移送機自動制御盤と燃焼系自動制御監視盤による。第3.15-12 図に新燃料受入貯蔵設備～炉内までの炉心構成要素の角度設定フローを示す。

平成5年10月から平成6年5月まで実施した燃料荷へにおいて、200体の新燃料を炉心に装荷したが、挿入異常警報で停止したものは、内側燃料荷時に2回あった。そこで押し込み荷重を200から250Kgに上げたところ、外側燃料荷時は無かった。このことから、新燃料方位調整装置は要求機能を満足していることが確認された。

ただし、新燃料方位調整装置は予め炉心への装荷位置を決定したことにより、その機能が発揮されるもので、BVST移送後の装荷位置の変更または、炉内シャフリング時には挿入角度が合わないことが考えられることから、燃料交換装置側で任意の回転角に設定できるような対策を今後、検討していく必要がある。
第3.15-11
断面A-A
(図3:1:3)
地下台車状態位置

方浜部に配慮のため、必要に応じる状態で、下記の状態を考慮している。

- 方浜部状態
 - 上記状態
 - 右回転
 - 左回転

- 回転台
 - -30°～50°

- 回転台回転
 - 30°：回転台を -5.0°

- 回転台回転
 - 180°回転

- 回転台回転
 - 90°：回転

第 3.15-12 図 全体配置図
（4）燃取ＩＴＶ及び無線通話装置の設置（平成5年1月～平成7年3月）

①ＩＴＶの追加設置

燃料取扱設備の運転は燃取操作室（A－301）からの遠隔自動操作により行うこととしており、運転員の操作をサポートするためにＩＴＶが各設備に設置され、位置決め、燃料番号確認及び干渉等の監視に使用している。しかしながら、SKS、燃料装荷運転等を通じて監視対象を拡大した方がより安全、確実な運転ができるとの判断から次のエリアに追加した。

・新燃料移送室（A-479）：ＩＡＥＡの保障措置対応として新燃料移送室の運営者間がシールされることとなり、地下台車の異常時の対応にシール解除の手続き等で時間を要することとなった。そこで新燃料移送時の地下台車の通路が行えるようＩＴＶを設置した。

・燃料出入機通路（A-573）：燃料出し入れはM／B側壁に燃料出し入れ火災監視用として設置されている。また、走行台車の前に各1台取付られ、走行中の前方及び後方を確認している。しかし、燃料出し入れが走行を開始する際の足元が死角となっている安全上問題であることが、これまでは試験員または運転員が現場で人がいないことを確認していた。そこで燃料出し入れ出入口C／V側壁面に追加して前進の際の足元の安全が確認できるようにした。また、走行開始前に通路上に立ち入った人がいる場合には、注意を音声で行えるようなスピーカを通路の壁に取り付けた。

・M／B点検エリア（M-501）：燃料交換時にはFH,M,ＩＶＴＭを炉上駕に据付するが、その準備作業はM／B点検エリアで行う。その時、ガス置換操作等を運転席で行うが現場の状況がつかめなかった。また、燃料出し入れのグリップ交換等でA／BからM／Bへ移動するが、現在の燃料出し入れ通路にあるM／B側壁のＩＴＶでは、後方の足元の確認ができないことから、安全上問題があった。

・燃料交換が格納容器内の炉上にされると、現状、中央制御室において監視ができ、そのものの肝心の燃取操作室ＩＴＶでは受信できない状況にあった。そこで中央制御室へ映っている映像信号を分岐して燃取操作室でも受信できるようにした。

また、追加したＩＴＶのうち燃料出し入れ通路及びM／B点検エリアについては、現場の臨場感を燃取操作室で感じることにより、より的確な操作が可能と判断しマイク付カメラを設置した。
②無線通話装置の設置

燃料取扱設備は多数の動的機器から構成され、各機器は起動、停止を頻繁に行うことから、運転中に軽故障の発生や調整等が比較的生じやすいことから、S K Sにおいて現場と燃取操作室との連絡に試験請負会社は仮設の無線通信を設置して実施した。S K S後、設備を動燃が引き取って運転してきたが、運転に伴う現場条件変更及びE V S T ドアバルブ移設作業等において現場と燃取操作室との連絡が頻繁に必要であり、それを本設の通信設備で行うことは、ページングまで行くこととなり現場から離れなければならず、適切なタイミングでの連絡ができないことが分かった。そこでS K S中に使用していた無線通信装置を本設化するとともに通信エリアの拡大を図った。これにより運転時の連絡だけでなく、点検時においても容易に現場と操作室との間で連絡ができるようになり、安全性および作業性が向上した。

第3.15-13 図に通信設備システム構成図を示す。
第3.15-13 図 通信設備システム構成図
（5）燃料容器用ジブクレーン及びホイストの昇降速度変更（平成4年2月～3月）

SKSで新燃料輸送容器の取扱試験を実施したが、燃料容器ジブクレーン及びホイストの昇降速度が速く（8.5m/min）、輸送容器の着床時に容器に振動が生じ、オペレータのちょっとしたミスにより、輸送容器（新燃料）に衝撃を与えるおそれがあることが分かった。他のプラントの同様なクレーンを調査したところ、1m/min程度の低速で使用されていた。そこで昇降速度の低速化について検討し、現状の駆動部に従速モータを追加し、高速/低速（8.5/0.85m/min）の2段階で操作が行えるよう改造した。また、従速モータ追加工事に合わせ、ジブクレーンの横行速度を17m/minから5m/minに変更し、狭いスペースでの取扱い作業の安全性及び作業性を向上させた。

（6）燃料出入機本体Aドリップバン複数洗浄化（平成4年5月～平成5年10月）

燃料出入設備は燃料交換及び燃料処理運転においても使用するもので、燃取設備の中でも最も幾度か着が厳しい機器である。燃料出入設備の運転に伴い本体AドアバルブにはNαが、本体Bドアバルブには水が取り扱う燃料等から滴下する。滴下するNα等を受けるためにドアバルブにドリップバンが取付てあり、所定の取扱い体数を経過したら物Bは、水中台車用ドアバルブを通して燃料池に水抜きを行う。本体Aについては所定の取扱い体数を経過した後新しいドリップバンに取り替え、使用後のドリップバンは一連の運転モードが終了するまで燃料検査槽に仮保管することとしており、ドリップバン交換を燃料交換時に約4回、燃料処理運転時は約9回行う計画となっている。燃料検査槽に保管されたドリップバンは、燃料交換後及び燃料処理運転後にM/B共通保修設備燃取機器洗浄設備で一体づつ洗浄することとなっていた。SKS及びその後の燃料移送運転をを通して、一体づつ洗浄とは時間がかかり過ぎる（約30時間／体）こと、洗浄運転は湿潤窒素ガスで行うのが運転中窒素ガスパーシージをしており、窒素ガスはワンスルー方式で排出されることから消費量が多く経済性が著しく悪いことが明らかになった。そこで複数体の洗浄を行うことを提案し、現状の洗浄装置での洗浄性確認試験を実施することとし、ドリップバン間にスペースを入れて3体による試験を平成4年5月に行った。その結果、複数体の洗浄が可能なのかが分かった。また、洗浄後の乾燥を窒素ガスで行うこととなっているが、地下台車で保管中は室内の空気雑雑気にさらされる
ことから、ドリップパンについては空気により乾燥するように変更した。そして洗浄後の燃料出入機によるドリップパンの取扱いは本体Bで行うこととし、その取扱い試験も実施した。第3.15-14 図に改善後の乾燥ガスフロー図を示す。

洗浄性確認試験の結果を受け、ドリップパン洗浄治具の改造を検討した。洗浄及び乾燥は、洗浄槽の下端ほど供給される蒸気、乾燥空気に近くなることから、その効果が増大される。従って洗浄治具はできるだけ長尺にすることとし、一度に9体まで洗浄が可能とした。そして、蒸気等がドリップパンの内部に回り込み易いような構造とするため、洗浄槽と治具の空間を通過しないよう隔板板を数段設置することとした。H5年3月

掘付後、ドリップパンの取扱い及び洗浄試験を行って複数体の洗浄ができるようになっ
た。これにより、洗浄期間の短縮及びユーティリティ（窒素、蒸気、脱塩水等）の消費の低減が図られた。

第3.15-15 図にドリップパン複数個洗浄治具構造図を示す。
改善後の乾燥ガスフロー図

N_2

復水器

燃料取扱機器洗浄槽

燃料取扱機器洗浄槽

蒸気

ガス加熱管

ガス加熱管

蒸気

ミキサ

ドレンセパレータ

液体廃棄物処理設備

廃水冷却器

廃水タンクA

廃水タンクD

浄化フィルタユニット

気水分離器

真空ポンプ

スクラバ

廃ガス加熱管

改善前の燃料取扱機器洗浄槽

改善前の燃料取扱機器洗浄槽

改

善

後
（7）レールプリッジ改造（平成4年11月）

原子炉運転中、格納容器は機器ハッチ、エアロック等は閉止され、原子炉格納容器のバウンダリが確保されているが、燃料交換時は燃料交換のため機器ハッチが開放され炉上部とE V S Tの間を燃料出入設備が往復して新燃料と使用済燃料を交換する。

原子炉停止から燃料交換開始までには、①機器ハッチ開 ②レールプリッジ取付け ③燃料交換設備取付等の準備作業がある。燃料交換終了後、準備作業を逆（F H M等の取外し等）に行う後始末作業がある。

設計上の準備作業期間は現実的ではないが、24時間作業で約5日となっている。このうち機器ハッチ開とレールプリッジ取付で約1日としているが、S K S期間の実績は昼間作業で機器ハッチ開、レールプリッジ取付共3日費やしていた。これは一つには機器ハッチ開とレールプリッジ取付で作業社が異なっていたため、作業安全性並行作業を組めなかったことである。しかし、そればかりではなく、レールプリッジの取付作業が煩雑なことから一社により並行作業を行っても4日はかかることが明らかとなった。燃料装荷においても5〜6回の開閉が予定され、特に臨界近傍になれば、燃料装荷運転1日のために開閉で8日費やすこともありうることが分かった。更に初期炉心構成後の出力分布試験で試験体照射放射線及ぶ、出射で頻繁に開閉することから、現状のままでは試験工事のみならず試験そのものが条件を満足しないおそれが懸念された。作業エリアは放射線管理区域であることから、同一作業員の入城時間は10時間/日との制約があり、24時間作業は3交替を行うこととなり、要員の確保が難しく、日勤プラス残業が現実的な対応である。そこで機器ハッチ開及びレールプリッジ取付を日勤ベースで2日間で行えるよう改造及び治具の調達を行うこととした。改造 等の内容を以下に示す。

① レールプリッジはワイヤ4本で吊れていたが、重心位置が中心からずれていることから水平に吊るためチェーンブロックで調整していたが、その調整に時間がかかっていったことから、専用の吊り具を製作し水平に吊れるよう予め調整しておく。

② レールプリッジは、常設のレールとの取り合い精度が厳しく（例：段差1mm以下）ことから、精度内に納めるための調整に時間がかかっていた。そこでガイドを新たに取り付けて調整の時間をなくした。

③ 取り外されたレールプリッジは燃料出入線の運転の障害にならないようレールガータの外側に置かれている。取付にあたっては、給電架台を取り外して別の位置の給電
架台に一度仮固定しレールプリッジをウォールクレーンで吊り上げ、機器ハッチ位置まで旋回し設定した後、レールプリッジ部の給電架台も同様にウォールクレーンで吊るが、クレーンの寄り付きの関係で補巻きから主巻きに掛け変える作業を行ってから旋回しレールプリッジに取り付ける。その後、仮固定した給電架台を正規の位置に復旧する。このように作業が複雑なことから、給電架台の仮固定の方法をボルト締めからビン止め構造に変更する等により作業性の改善を図った。

④ 機器ハッチは72本ものボルトで固定されており、その締め作業は油圧式のボルトテンショナーで行うが、電動ナットランナを新たに購入して併用することで作業時間を短縮する。

⑤ 機器ハッチ開、レールプリッジ取付を一社に発注して、一つの作業として可能な範囲で並行作業とし時間短縮を図る。

以上の対策を行った後、臨界までは作業員の習熟訓練も兼ね3日間で実施した。その実績を反映して、臨界移行は約20回におよぶ開閉作業を行ったが、いずれも2日で作業を完了することができた。

(8) 燃焼設備の瞬時停止対策（平成5年10月～平成6年3月）

平成5年1月に落雷により外部電源の瞬時電圧低下（以下瞬停）が生じ、一部の機器が停止する事象が発生し、復旧のために多くの努力と時間を費やす結果となった。

特に外部電源喪失時の崩壊熱除去維持等のために非常用電源に接続されている機器においても、停止した物があり、安全性に対する懸念と復旧時の運転負担軽減の観点から設備の一部について改善する必要があることが分かった。燃焼設備においても瞬間防止対策装置の設置状況及び問題点の調査を実施した。

その結果、燃料投掲設備については非常系であっても、一部の機器を除き瞬停防止対策がとられていなかった。これは燃焼設備については瞬停時には、手動操作による復帰を行うための時間的余裕があり、系続的にも問題がないとの判断から対策が取られていないかった。しかしながら、実際に生じたプラント全域の瞬停においてその後の対応に予想以上の労力を要した経験から、必ずしも時間的余裕があるとは言えない状況にあることが分かった。そこでプラント全体について非常用電源に接続されている機器は原則と
して瞬時停止対策を実施することとし、更に常用電源に接続されている機器のうち、運転負荷軽減等の観点で有効な改善が期待できるものについて、段階的に実施することとし、これによりプラント全体の安全性及び信頼性を向上させることとした。

以下に燃焼設備における瞬時停止対策対象機器を示す。

第一段階

(1) 非常用電源に接続されている機器
① しゃべいプラグ窯素ガス冷却系プロロA、B
② 燃料池水冷却浄化装置循環ポンプA、B
③ E V S T冷却系循環ポンプA、B、C
④ 燃料出入機本体Aグリッパ駆動装置ヒータ

(2) 常用電源に接続されている機器
① E V S T 1次補助N a系及び上ポンプ
② E V S T 2次補助N a系電磁ポンプ
③ ドアバルブガス置換系真空ポンプ
④ 新燃料予熱系予熱運転関連機器（新燃料予熱運転連動回路）

第二段階

① 燃料池水冷却浄化装置保持ポンプ
② E V S T 1次補助N a系C／TプロロA、B
③ E V S T 2次補助N a系C／T冷却ファン
④ 燃料出入機本体Aコフィン上部ヒータ
⑤ 燃料出入機本体Aコフィン中部ヒータ
⑥ 燃料出入機本体Aコフィン下部ヒータ
⑦ 燃料出入機本体Aドアバルブヒータ
⑧ 燃料検査槽上部予熱ヒータ
⑨ 燃料検査槽中部予熱ヒータ
⑩ 燃料検査槽下部予熱ヒータ
⑪ 燃料検査槽下部D P予熱ヒータ
なお、対策方法は、各機器の動力回路収納盤に瞬時再起動リレーを追加し、自己保持回路収納盤に再起動のリレーを並列接続する。新燃料予熱運転連動回路については連動運転条件に取り込んでいる信号のうち、瞬時により落ちる可能性のある入力点については、自動制御盤シーケンサソフトにオフディレータイマーを挿入し瞬時時でも条件が継続出力されるようにした。

(9) 新燃料移送時間の短縮化（平成3年12月～平成8年3月）

① 初期予熱運転の完了条件変更（平成3年12月～平成7年7月）

新燃料等をEVSトに移送する際に地下台車で新燃料予熱装置により、150℃以上に予熱するが、SKSの段階からシステムの初期予熱に必要以上に時間がかかっているとの意見が担当者よりあった。これは初期予熱の完了条件をタイマーによる時間確認とする設計であったためである。今後、燃料装荷に向け新燃料をEVSトに連続的に移送する事になり、時間短縮が燃料装荷工程から要求されてきた。そこで、管理（150分）から温度管理（加熱器出口温度が240℃以上）にすることにより、予熱完了を確実にするとともに予熱時間の削減を図ることとして確認試験を行った。その結果、予熱時間は150分から80分へ約70分短縮ができる見通しを得た。更に新燃料予熱を2体分行う自動化運転パターンにおいて、1体目の新燃料予熱完了から2体目の予熱開始までの間も予熱運転を停止させず、初期予熱状態を維持することで2体目の予熱開始時には、間もなく予熱完了となり予熱時間が大幅に短縮できることが分かった。初期予熱の変更により次の改善が図られる。

◎新燃料移送時間の短縮

・新燃料移送（1体）：7時間 ⇒ 5時間50分（約70分短縮）
・新燃料移送（2体連続）：14時間 ⇒ 11時間 5分（約175分短縮）
・新燃料移送（3体連続）：21時間 ⇒ 16時間20分（約280分短縮）
・新燃料移送（4体連続）：28時間 ⇒ 21時間35分（約385分短縮）

◎燃料処理貯蔵運転時間の短縮

「2体分処理・新燃料移送」の自動化運転において、1回の所要時間が13時50分から12時間に約110分（55分×2）短縮される。但し、「2体分処理・燃料移
送』の自動化運転は、初期予熱がクリティカル巴斯でないため、総所要時間に変更はない。

以上の検討結果をもとに予熱制御方式を変更し、EVTへの新燃料移送運転を行って運転時間を確認したところ、1体目で約60分、2体目で約90分（連続で約150分）の短縮が図られた。このことから、以後のEVT移送運転は3～4体／日の見通しを得、燃料装荷工程がスムーズだったことから4体／日で実施した。

更に、冬季の予熱運転において、初期予熱条件がプロブロ入口ガス冷却プロブロの起動により加熱器出口温度が影響を受け、条件成立直前で温度が低下し初期予熱完了に4時間程度かかったことから、新燃料予熱の機能に影響がほとんどないとと思われる温度（235℃）に完了条件を下げる改造を行った。（平成7年7月）

② 新燃料予熱完了条件の変更（平成8年2月～3月）

新燃料等の予熱完了は時間管理としており、SKSの予熱試験において確認した結果から、新燃料は90分、中性子しゃべい体は210分となっている。しかし、これまでの移送時予熱運転で季節（室温）により地下台車収納管出口温度にかなりの差があり、集合体の到達温度にも差があることが推定され、予熱温度を確保するのであれば、夏場はもっと予熱時間が短縮できることが予想された。そして集合体の予熱温度と収納管出口温度との間にはなんらかの相関関係があるものと思われることから、収納管出口温度を完了条件とすることで、より確実に予熱完了が確認でき予熱時間の短縮にもなると考え、制御方法を変更して、集合体に温度ラベルを張り予熱試験を行って、完了条件の温度を確認した。その結果、収納管出口温度を新燃料130℃、中性子しゃべい体110℃にすれば確実に予熱温度150℃を満足することが分かった。
(10) 2次系機器洗浄設備（平成5年6月〜平成7年10月）

共通保修設備は、1次系ポンプ洗浄設備と燃焼機器洗浄設備から構成され、平成3年4月に竣工を完了し、SKS後、平成4年12月に設備移管を受けており、燃料装荷運転等に伴う燃料入出機グリップ、ドリップパン、FHM、IVTM等燃焼機器のNa洗浄
に使用している。しかしながら、2次系Na機器の保守時の洗浄設備がなかった。2次
系機器の洗浄設備は概念設計時点では考慮されていたようである（原子炉設置許可申請
書中の主要建物平面図に2次系洗浄室が記載されている）が、「もんじゅ」建設費高騰
による一連の合理化設計の中で、一括契約から除外され全体の竣工工事完了後に追加す
ることとしていたようで平成5年6月に2次系機器洗浄設備設計、製作について本社か
ら業務引き継ぎを受け、以降サイト主体で設計、製作等を実施することになった。

当初の設計は、対象機器を2次系主循環ポンプ及び弁等小物機器とし、洗浄設備はポン
プ洗浄槽及び大気開放型水槽で構成を考えていたようである。しかし、引き続き段階
で本社から蒸発器及び過熱器も洗浄対象加えて大型洗浄槽とし、小物機器は別途洗浄用
カゴ等の治具を製作して大型洗浄槽で洗浄する旨の提案があった。それを受けて、メー
カ（富士電機）に設計、製作、搬入の発注を行った。

設計検討の結果、蒸発器及び過熱器も洗浄対象に加え大型の2次系機器洗浄槽とし
、小物機器については小物洗浄槽を新たに設けることとした。但し、2次系洗浄設備と
して確定している予算（2年マル値）を超えることが明らかになった。そこで小物洗浄
槽については6年度の単年度予算から調達することとした。その後、詳細設計を重ね平
成6年8月に原子炉等規制法に基づく設工認変更申請（共通保修設備への追加）をし、
9月認可された。（共通保修設備は電気事業法上、工認申請対象設備となっていないこ
とから既設備についても申請していない）

10月から工場製作を開始し、平成7年3月に小物洗浄槽の搬入、搬入、4月に2次系
機器洗浄槽の搬入、搬入をした。その後、配管、制御盤、ケーブル等の工事をし、8月
から単体機能試験、性能試験を実施して10月工事を完了した。

共通保修設備については工認申請をしていないことから、労働安全衛生法の適用を受
けることになるかの疑問が生じた。電気事業法の規制を受ける場合は労働安全衛生法の
除外規定に記載があり、労働安全衛生法の規制を受けないこととなる。電気事業法の規
制を受けない場合は労働安全衛生法の規制を受けることとなる。その場合は、洗浄槽が第一種圧力容器となり労働安全衛生法に基づく手続きが必要となり、据付後においても1回／年の性能検査等が必要となる。既設の共通保修設備の状況を調査したところ、労安法の手続きは工場段階で製造許可申請を製造メーカーで行っているが、据付以降の手続きは行っていない。これは電気事業法に基づく手続きを行っていないくても、発電所設備内の設備は電気事業法の規制を受ける旨、当時、MITI富山に確認し、労基署に対しては労安法の適用除外の了解を得たとのことであった。また、同様な例としてアルゴンガス、窒素ガス供給設備があり、これについては資源エネルギー庁に確認した結果が、メモとして残っており「工事申請していなくても、適用範囲である」との回答を得ていた。

これらのことから、2次系機器洗浄設備の労安法上の取扱いについては、労安法の手続きはせずに、溶接検査を原安センター（セ）に加えて発電技検（G）も受検することとした。（テクニカルメモ 保-94-031 参照）

第3.15-16 図に系統の概要、第3.15-17 図に洗浄の姿図、第3.15-18 図に2次系機器洗浄設備主要機器位置図、第3.15-4表に2次系洗浄設備据付工事工程表を示す。
第3.15-17 図 洗浄の姿図

2次主循環ポンプ洗浄時

蒸発器洗浄時

過熱器洗浄時
<table>
<thead>
<tr>
<th>作業</th>
<th>日程</th>
<th>1/月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 機械工事（機械, 配管, 架台等）</td>
<td></td>
</tr>
<tr>
<td>(1) 基礎工事（TK012）</td>
<td></td>
</tr>
<tr>
<td>(2) 資深孔穴明け工事</td>
<td></td>
</tr>
<tr>
<td>(3) 総合設備工事</td>
<td></td>
</tr>
<tr>
<td>(4) 機器設備工事</td>
<td></td>
</tr>
<tr>
<td>(i) 2次系機器溶接槽（TK012）</td>
<td></td>
</tr>
<tr>
<td>(ii) 2次系水加熱器（HX007）</td>
<td></td>
</tr>
<tr>
<td>(iii) 2次系循環ポンプ（P0009）</td>
<td></td>
</tr>
<tr>
<td>(5) 配管工事</td>
<td></td>
</tr>
<tr>
<td>(i) サポート施工</td>
<td></td>
</tr>
<tr>
<td>(ii) 配管施工</td>
<td></td>
</tr>
<tr>
<td>(6) クラッシング, 耐圧</td>
<td></td>
</tr>
<tr>
<td>(7) 保有工事</td>
<td></td>
</tr>
<tr>
<td>(8) 塗装工事</td>
<td></td>
</tr>
<tr>
<td>2. 電気計装工事</td>
<td></td>
</tr>
<tr>
<td>(1) 資深孔, 電線管布設工事</td>
<td></td>
</tr>
<tr>
<td>(2) 新規配線機の設置, 接続工事</td>
<td></td>
</tr>
<tr>
<td>(3) 計器設置工事（ケーブル類含む）</td>
<td></td>
</tr>
<tr>
<td>(4) 新設盤の改造</td>
<td></td>
</tr>
<tr>
<td>3. 現地試験</td>
<td></td>
</tr>
<tr>
<td>(1) 接続試験</td>
<td></td>
</tr>
<tr>
<td>(2) 単体試験</td>
<td></td>
</tr>
<tr>
<td>(3) 調整試験</td>
<td></td>
</tr>
<tr>
<td>(4) 系統運転試験</td>
<td></td>
</tr>
</tbody>
</table>
(11) 仏詣仏の追加製作（平成6年～平成8年3月）

仏詣仏はNa洗浄後の使用済燃料集合体等を燃料池で水中保管する際に用いるもので、燃料洗浄設備から取り出した燃料を燃料仏詣仏設備に燃料出入設備で移そうし、燃料仏詣仏装置内に予め容易に仏詣仏に収納し、蓋をポルト締めして仏を密閉する。

FBRの燃料被覆管は通常ステンレス製であり、Na中で照射したものを、燃料池の中で長期に保管した実績がないことから、保管中に万一、被覆管に腐食等により穴が開きFPガスが外部に漏れいするような事象が生じた場合に、環境に放出されないよう仏詣仏に関し込んでおくために仏詣仏を使用する。仏詣仏はAとBがあり、Aは炉心燃料及びブランケット燃料を、Bは制御棒を入入れることとしており、対数がAはフラットに対しBは窪んだ形となっている。第3.15-19図に仏詣仏A、B構造図を示す。

仏詣仏は燃料の交換計画に沿って、事前に製作しておく必要がある。当初、燃焼設備の機能確認に使用するため燃料仏詣仏設備の製作、設付の中で10個製作した。

平成4年度に第一回燃焼後に使用するため5個の追加製作を計画し、設工認及工認変更申請をした。仏詣仏の製作完了（使用前検査受検）が本格運転開始（運転）前となることから、原計画の変更ということで、初回製作の10個に8個を追加する形の手続きをした。（原子炉等規制法第27条第2項に基づく設工認変更及び電気事業法第70条第2項に基づく工認変更）

平成6年4月申請、5月認可を受け、9月から製作を開始した。仏詣仏85個と仏詣仏倉庫箱10個を製作し平成7年3月現地に搬入した。仏詣仏倉庫箱は仏詣仏を使用するにあたって予め新燃料貯蔵室仏詣仏倉庫ラック（容量50個）に収納する場合に新燃料移送機により遠隔自動運転で行うことから、新燃料移送機との取合位置を精度よく設定するために専用の架台が必要となる。そこで専用の架台と輸送容器を兼ねる仏詣仏倉庫箱を製作することとした。

平成6年度の時点での「もんじゅ」の運転継続は平成7年12月であった。燃料交換は2回／年実施することから第2回燃交は平成8年12月頃、また、第3回燃交は平成9年5月頃の計画となっていたことから、これらの使用済燃料等の燃料処理運転前に準備することとして、平成7年度末までに209個追加製作することとした。この209個については製作完了が、運転以降（使用前検査合格後）であることから原設備への追加と
第3.15-19 図

銅結合 A，B 構造図
いう扱いとなり、平成7年3月、原子炉等規制法第27条第1項に基づく原子炉施設変更に係る設工認及び電気事業法第70条第1項に基づく工事計画届出を行った。

しかしながら、平成7年3月及び5月の水蒸気系のトラブルにより、運転時期は平成8年夏頃に延び、更に12月8日の2次系Nα漏えいにより未定の状態になった。

缶詰缶の製作は9月から開始し平成8年3月にサイトに搬入されたが運転時期未定のため電気事業法の使用前検査申請ができない状況になっている。

缶詰缶検査箱も今回20箱追加製作した。缶詰缶検査箱は合計で30箱（缶詰缶150個分）となったが、残り109個は木箱に収納している。今後、缶詰缶の製作時には納入済の缶詰缶検査箱及び木箱をメカに返送して繰り返し輸送時に使用する。

第3.15-20 図に缶詰缶使用スケジュール、第3.15-5表に製作工程表を示す。
第3.15-20図 作業使用スケジュール

<table>
<thead>
<tr>
<th>平成6年度</th>
<th>平成7年度</th>
<th>平成8年度</th>
<th>平成9年度</th>
<th>平成10年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイクル</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
</tr>
<tr>
<td>燃料交換</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>取消し数数</td>
<td>d78</td>
<td>d59</td>
<td>d40</td>
<td>d50</td>
</tr>
<tr>
<td>(d:所期側担当者)</td>
<td>c10</td>
<td>c19</td>
<td>c19</td>
<td>c19</td>
</tr>
<tr>
<td>b:プランネット</td>
<td>b34</td>
<td>b34</td>
<td>b35</td>
<td>b34</td>
</tr>
<tr>
<td>c:印刷者</td>
<td>b34</td>
<td>b34</td>
<td>b35</td>
<td>b34</td>
</tr>
<tr>
<td>吹き出し河口</td>
<td>b34</td>
<td>b34</td>
<td>b35</td>
<td>b34</td>
</tr>
<tr>
<td>使用人数</td>
<td>b19</td>
<td>b19</td>
<td>b19</td>
<td>b19</td>
</tr>
<tr>
<td>必要本数</td>
<td>b19</td>
<td>b19</td>
<td>b19</td>
<td>b19</td>
</tr>
<tr>
<td>必要本数 + 予備</td>
<td>A項 54 + 6 = 60</td>
<td>B項 25 + 10 = 35</td>
<td>85 + 10 = 95</td>
<td></td>
</tr>
<tr>
<td>1. 第1回製作</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 第2回製作</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 第3回製作</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 保管本数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A項 | 5 | 55 | 21 | 181 | -125 | 34 | 244 | 152 | 66 |
B項 | 5 | 40 | 15 | 64 | 45 | 26 | 55 | 57 | 18 |
合計 | 10 | 95 | 36 | 245 | 170 | 60 | 300 | 180 | 86 |
<table>
<thead>
<tr>
<th>名称</th>
<th>日程</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-5-表</td>
<td>釧路釧 製作 工程表</td>
<td>釧路釧A型</td>
<td>組立試験</td>
<td>160体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>釧路釧B型</td>
<td>組立試験</td>
<td>49体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>釧路釧A加工</td>
<td></td>
</tr>
<tr>
<td>釧路釧A溶接</td>
<td></td>
</tr>
<tr>
<td>下部親間加工 (パイプ)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部親間加工 (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下部平版前加工 (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部平版 A (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>釧路釧B加工</td>
<td></td>
</tr>
<tr>
<td>釧路釧B溶接</td>
<td></td>
</tr>
<tr>
<td>下部親間加工 (パイプ)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部親間加工 (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下部平版前加工 (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部平版 B (鋳鋼品)</td>
<td>素材</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>釧路釧組合箱</td>
<td>20体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考:
* 素材の分割単位を予定しているため、材種の立会いも何回かに分けて実施する予定
* 素材の分割単位は20体/回で計画しています。材種別試験

耐圧試験→外観寸法検査
の順序で進めます。
3.16 燃料取扱貯蔵設備の運転・保守経験のまとめ

前項まで各設備の運転、保守実績、異常事象及び設備改造について述べたが、燃焼設備の運転実績を第3.16-1図にまとめた。

「もんじゅ」の年間の運転は、定常状態で原子炉運転4ヶ月、燃料交換1ヶ月で年間2サイクル（定検3ヶ月）を計画しており、1サイクル当たりの燃料交換体数は最大128体で通常は約103体（燃料84体、制御棒19体）である。

燃料装荷からこれまで369体の燃料交換実績があり、燃料交換に使用する回転プラグ、燃料交換設備及び燃料装入設備は約3.5燃交分の運転を行っている。

また、燃料処理貯蔵に使用する設備は、模型体の洗浄処理で208体、その他試験等の運転を含めると約2燃交分の運転実績があるが、燃料缶詰設備については使用済燃料の取出しを行っていないことからほとんど休止状態にある。

第3.16-1表に燃料設備燃料等取扱実績、第3.16-2図に燃料装荷工程、第3.16-2表に燃焼設備燃料等取扱実績（平成7年）を示す。

このような使用状況の中で、これまで平成4年度から1回／年の設備点検を実施してきている。点検機器の選定にあたっては、点検の必要性を明確にするため点検基準を平成4年に作成した。点検基準は、「常陽」の基準を参考に使用頻度や構造の相違を考慮して作成したものであるが、予算との関係でこれまででは基準に則った点検は実施できていない。

第3.16-3図に燃料取扱設備保守実績、第3.16-3図10表に平成4年度から平成7年度までの設備点検項目及び点検実績工程を示す。

燃焼設備はこれまで、主として炉心までの上流側の機器の使用状況が多く、トラブルの発生もメカニックなところでは燃料交換のグリッパ動作不良、燃料出入機本体Aグリッパ昇降動作不良同じく本体Aドアバルブ全閉不可等があった。また、燃焼設備は遠隔自動運転となっていることから、シーケンス渋滞等のトラブルの事象は軽微なもの、比較的多く発生している。SKSにおいても燃料交換自動運転及び燃料処理貯蔵自動運転の試験を行い、総合運転における問題点を解決してきているが、多数の検出器、駆動機構等の組み合わせにより複雑な構成になっていることから、運転に伴う経年変化等による多少のズレでシーケンス渋滞等の伝送異常に至っているものと思われる。
これまでの運転は新燃料及び模擬体でありほとんど発熱がないことから、シーケンス渦滞等が生じても復旧に対する時間的な制約は安全上なかった。しかし、今後は使用済燃料を扱うこととなり、少しの停止も第一に崩壊熱の除去を考えて対処する必要があり、運転員及び保守員は燃取設備を熟知していることは勿論のこと計装制御の実務を習熟した要員を配置する必要がある。
<table>
<thead>
<tr>
<th>年</th>
<th>設備名</th>
<th>月</th>
<th>H 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>主要工種</td>
<td>H 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>性能試験</td>
<td>H 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>助記</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>回転プラグ</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>燃料交換設備</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>燃料供出設備</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>戸外燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>燃料処理設備</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>燃料補給設備</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>水中燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>新燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>燃料運搬設備</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>燃料計量設備</td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>燃料計算機システム</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>助記</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>回転プラグ</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>燃料交換設備</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>燃料供出設備</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>戸外燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>燃料処理設備</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>燃料補給設備</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>水中燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>新燃料供入設備</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>燃料運搬設備</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>燃料計量設備</td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>燃料計算機システム</td>
<td></td>
</tr>
<tr>
<td>年</td>
<td>H 7</td>
<td>月</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>設備名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要</td>
<td></td>
<td>工程</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>回転プラグ</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>燃料交換設備</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>燃料出入設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>炉外燃料防護設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>燃料洗浄設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>燃料交換設備</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>水中燃料防護設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>新燃料受入貯庫設備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>燃料換出設備</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>燃焼共通配電設備</td>
<td></td>
</tr>
<tr>
<td>730</td>
<td>燃焼計算機システム</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>共通保全設備</td>
<td></td>
</tr>
</tbody>
</table>

注: H 7 は "年月"、H 8 は "年月"。年間の主要工事が記載されている。
<table>
<thead>
<tr>
<th>設備名</th>
<th>取扱実績</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転プラグ</td>
<td>取扱実績（回）</td>
<td>約840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5940</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料交換装置</td>
<td>取扱実績（体）</td>
<td>約120</td>
<td>約370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>炉内中間装置</td>
<td>取扱実績（体）</td>
<td>約60</td>
<td>約270</td>
<td>約400</td>
<td></td>
</tr>
<tr>
<td>燃料出入口本体A</td>
<td>取扱実績（体）</td>
<td>約300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料出入口本体B</td>
<td>取扱実績（体）</td>
<td>約300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>炉外燃料ポンプ</td>
<td>取扱実績（体）</td>
<td>約60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料検査機器</td>
<td>取扱実績（体）</td>
<td>約120</td>
<td>約300</td>
<td>約430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料洗浄装置</td>
<td>取扱実績（体）</td>
<td>約60</td>
<td>約270</td>
<td>約430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料給気装置</td>
<td>取扱実績（体）</td>
<td>約20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水中台車</td>
<td>取扱実績（体）</td>
<td>約100</td>
<td>約240</td>
<td>約240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>約9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料移送機</td>
<td>取扱実績（体）</td>
<td>約100</td>
<td>约290</td>
<td>约430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>约9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新燃料キャスク</td>
<td>取扱実績（体）</td>
<td>約100</td>
<td>约290</td>
<td>约430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>约9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下台車</td>
<td>取扱実績（体）</td>
<td>約100</td>
<td>约290</td>
<td>约430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>约9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下台車予熱装置</td>
<td>取扱実績（図）</td>
<td>約100</td>
<td>约290</td>
<td>约430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>约9120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>共通廃棄物処理</td>
<td>取扱実績（回）</td>
<td>約100</td>
<td>约290</td>
<td>约430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840</td>
<td>约9120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：SKS完成までの取扱実績
SKS完成以降の取扱実績
<table>
<thead>
<tr>
<th>設備名</th>
<th>取扱対象</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>計</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料取換装置</td>
<td>燃料</td>
<td>50</td>
<td>2</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>24</td>
<td>77</td>
</tr>
<tr>
<td>炉内中継装置</td>
<td>制御棒</td>
<td></td>
</tr>
<tr>
<td>燃料出入機</td>
<td>新燃料等</td>
<td>模擬体</td>
<td>50</td>
<td>2</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>本体A</td>
<td>ドリップパン</td>
<td></td>
</tr>
<tr>
<td>燃料出入機</td>
<td>模擬体</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>3</td>
<td>19</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体B</td>
<td>供給台</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>3</td>
<td>19</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>炉外燃料供給管</td>
<td>燃料</td>
<td>模擬体</td>
<td>2</td>
<td>50</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>24</td>
<td>5</td>
<td>19</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>制御棒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ドリップパン</td>
<td></td>
</tr>
<tr>
<td></td>
<td>模擬体</td>
<td>2</td>
<td>50</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>24</td>
<td>5</td>
<td>19</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>5</td>
<td>194</td>
</tr>
<tr>
<td>燃料検査設備</td>
<td>燃料移送ポート</td>
<td>模擬体</td>
<td>2</td>
<td>50</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>24</td>
<td>5</td>
<td>19</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>A ドリップパン</td>
<td></td>
</tr>
<tr>
<td>燃料洗浄設備</td>
<td>模擬体</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>8</td>
<td>197</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>供給台</td>
<td>模擬体</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>水中台車</td>
<td>供給台</td>
<td>模擬体</td>
<td>50</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>6</td>
<td>192</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>模擬体</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>6</td>
<td>192</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料移送機</td>
<td>供給台</td>
<td>模擬体</td>
<td>50</td>
<td>46</td>
<td>69</td>
<td>24</td>
<td>18</td>
<td>6</td>
<td>302</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新燃料**</td>
<td>燃料倉庫</td>
<td>ガラス輸送容器</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>36</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>供給台</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td>新燃料移送機</td>
<td>新燃料等</td>
<td>制御棒</td>
<td>24</td>
<td>19</td>
<td>40</td>
<td>4</td>
<td>76</td>
<td>4</td>
<td>24</td>
<td>152</td>
<td>19</td>
<td>46</td>
<td>19</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>模擬体</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td>地下台車</td>
<td>新燃料等</td>
<td>制御棒</td>
<td>19</td>
<td>40</td>
<td>4</td>
<td>76</td>
<td>4</td>
<td>24</td>
<td>152</td>
<td>19</td>
<td>46</td>
<td>19</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>模擬体</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>供給台</td>
<td>A ドリップパン</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>模擬体</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td>共通保修設備</td>
<td>FHM I VTM</td>
<td>出入機クリップパ</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>燃焼器洗浄槽</td>
<td></td>
<td>ドリップパン</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>
第3.16-3 図 燃料取扱貯蔵設備 保守実績 (1/3)（平成3年度、4年度）

<table>
<thead>
<tr>
<th>設備名・月</th>
<th>年</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
</tr>
</thead>
<tbody>
<tr>
<td>主要工程</td>
<td>建設事</td>
<td>総合性能試験</td>
<td>総合性能試験</td>
<td>SKS完了</td>
</tr>
<tr>
<td>020回転プラー</td>
<td>A隔油Eペグ塗装</td>
<td>▼A隔油Eペグ塗装</td>
<td>▼A隔油Eペグ塗装</td>
<td>機械検査</td>
</tr>
<tr>
<td>510燃料交換設備</td>
<td>▼スイミンガ装置不良</td>
<td>燃料交換装置上部装置</td>
<td>燃料交換装置上部装置</td>
<td>ロン孔ガス外観検査</td>
</tr>
<tr>
<td>520燃料出入設備</td>
<td>走行なし</td>
<td>走行なし</td>
<td>走行なし</td>
<td>走行なし</td>
</tr>
<tr>
<td>530冷却装置設備</td>
<td>▼SYS冷却水管緊張</td>
<td>▼SYS冷却水入水不良</td>
<td>▼SYS冷却水管緊張</td>
<td>燃料管理設備</td>
</tr>
<tr>
<td>541燃料検査設備</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
</tr>
<tr>
<td>550燃料洗浄設備</td>
<td>▼洗浄器開閉不良</td>
<td>▼洗浄器開閉不良</td>
<td>▼洗浄器開閉不良</td>
<td>▼洗浄器開閉不良</td>
</tr>
<tr>
<td>560燃料供給設備</td>
<td>▼燃料供給不具足</td>
<td>▼燃料供給不具足</td>
<td>▼燃料供給不具足</td>
<td>▼燃料供給不具足</td>
</tr>
<tr>
<td>570燃料送給装置</td>
<td>▼燃料送給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
</tr>
<tr>
<td>580新燃料供給設備</td>
<td>▼燃料供給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
<td>▼燃料送給装置運転不良</td>
</tr>
<tr>
<td>590燃料供給装置</td>
<td>▼燃料供給装置運転不良</td>
<td>▼燃料供給装置運転不良</td>
<td>▼燃料供給装置運転不良</td>
<td>▼燃料供給装置運転不良</td>
</tr>
<tr>
<td>596燃料供給電気計器設備</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
<td>▼燃料管理装置不良</td>
</tr>
<tr>
<td>732燃料計算システム</td>
<td>▼燃料計算システム</td>
<td>▼燃料計算システム</td>
<td>▼燃料計算システム</td>
<td>▼燃料計算システム</td>
</tr>
<tr>
<td>年</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>設備名</td>
<td>主要工程</td>
<td>性能试验</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年</td>
<td>H 7</td>
<td>H 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>設備名月</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主要工程</td>
<td>性能試験</td>
<td>▼初組入</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2次Nα検えい事故</td>
</tr>
<tr>
<td>020</td>
<td>回転プラグ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>燃料交換設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>燃料交換装置駆動部点検</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PIM昇降駆動装置A, PIM点検</td>
</tr>
<tr>
<td>520</td>
<td>燃料出入口設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>本体B台関係</td>
<td>▼本体A端関係／本体室異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼運転異常時(7/10時)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>水中燃料貯蔵設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BVST6速ドアパルプ工事</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼BVST7/8/9/9 食器部</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼BVSTガード 左側保養</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼BVSTガード 右側保養</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▽PDI タンク液位低下</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▽PDI 空気冷却器サンドイッチ点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>機体内洗浄処理(144/198)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>検査槽下部ヒータ温度計</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>燃料洗浄設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▽ソフト製造</td>
<td>▽運転ソフト変更</td>
<td>▽給油ホース検査（放液）</td>
</tr>
<tr>
<td></td>
<td>機体内洗浄処理(144/198)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▽E6AV31A 電磁弁動作不良</td>
<td></td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>燃料汚染設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼汚染タイマー動作不良</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼作動確認、機体内洗浄処理確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼汚染タイマー動作不良</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼機体内洗浄処理(148体)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼燃料汚染機走行トルク不良</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▼燃料汚染機自動制御異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>機体内洗浄(50体)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>機体内洗浄(55体)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>新燃料受入貯蔵設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼地下台車取付管</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼可動部間隔合管台式</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼機体内洗浄処理(空売45体)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>燃料計量計測設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼燃料計量計測設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼燃料出入口監視用TV不良</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>燃料計算機システム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>系統番号</td>
<td>系统名称</td>
<td>機器名称</td>
<td>点検内容</td>
<td>点検時期</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>020</td>
<td>しゃべいプラグ</td>
<td>窓素ガスプロワ A, B</td>
<td>分解点検</td>
<td>95/2～4</td>
</tr>
<tr>
<td>510</td>
<td>燃料交換設備</td>
<td>FHM昇降駆動装置</td>
<td>内部点検</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FHMパンクグラフ</td>
<td>分解点検</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>燃料出入機本体</td>
<td>本体Aグリップ</td>
<td>分解点検</td>
<td>7.16 ～8.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aアダプター</td>
<td>分解点検</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aグリッパ駆動装置</td>
<td>分解点検</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aドアバルブ</td>
<td>分解点検</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aコンフィン内筒</td>
<td>開放点検</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体A可動ブロック駆動装置</td>
<td>開放点検</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>燃料出入機冷却装置</td>
<td>本体A直接冷却系出入口弁</td>
<td>分解点検</td>
<td>8.5 ～26</td>
</tr>
<tr>
<td>523</td>
<td>燃料出入機走行台車</td>
<td>駆動部</td>
<td>簡易点検</td>
<td>8.21 ～28</td>
</tr>
<tr>
<td>531</td>
<td>炉外燃料貯蔵槽</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>7.28 ～8.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>回転ラック駆動装置</td>
<td>漏洩確認</td>
<td>8.5 ～7</td>
</tr>
<tr>
<td>533</td>
<td>炉外燃料貯蔵槽冷却系</td>
<td>空気冷却器（伝熱管部）A</td>
<td>開放点検</td>
<td>9.5 ～8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外気取入フィルタ A, B, C</td>
<td>開放点検</td>
<td>9.1 ～4</td>
</tr>
<tr>
<td>534</td>
<td>炉外燃料貯蔵槽一次補助トール系</td>
<td>窓素ガス循環プロワA</td>
<td>分解点検</td>
<td>9.1 ～11</td>
</tr>
<tr>
<td>538</td>
<td>ドアラッチ置換系</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td>8.3 ～10</td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>7.29 ～8.29</td>
</tr>
<tr>
<td>582</td>
<td>新燃料検査装置</td>
<td>a線検出器</td>
<td>線源校正</td>
<td>4.16 ～17</td>
</tr>
<tr>
<td>584</td>
<td>新燃料移送機</td>
<td>グリッパ</td>
<td>分解点検</td>
<td>4.8 ～15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>走行台車</td>
<td>簡易点検</td>
<td>4.8 ～16</td>
</tr>
<tr>
<td>586</td>
<td>地下台車</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>7.28 ～8.20</td>
</tr>
<tr>
<td>500</td>
<td>計測設備</td>
<td>計器</td>
<td>計器校正</td>
<td>7.27 ～9.29</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>単体 884台</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ループ 190台</td>
<td></td>
<td></td>
</tr>
<tr>
<td>763</td>
<td>コントロールセンタ</td>
<td>健全性 60台</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>盤体 (A/B-A3, B3, C3, D3, B3-C/C M/B-D1, E1, E2) 365ユニット</td>
<td>盤点検</td>
<td>5.18 ～6.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盤点検</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 295 -
<table>
<thead>
<tr>
<th></th>
<th>7月末</th>
<th>8月末</th>
<th>9月末</th>
</tr>
</thead>
<tbody>
<tr>
<td>入口関係</td>
<td>点検作業</td>
<td>検査作業</td>
<td>無 \n</td>
</tr>
<tr>
<td>チェック</td>
<td>8月</td>
<td>9月</td>
<td>10月</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>1. 工事計画書作成</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 工事準備、検査申請作成</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 暖房設備装置点検</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 空気冷媒器点検</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 外気取入口フィルタ点検</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 点検報告</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 簿類整理</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考
第3.16-5表 平成5年度設備点検検項目 (1/2)

<table>
<thead>
<tr>
<th>統番号</th>
<th>統名</th>
<th>機器名</th>
<th>点検内容</th>
<th>点検時期</th>
<th>点検社</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>しゃべいプラグ</td>
<td>シール部
回転プラグ
持上油圧装置</td>
<td>漏洩確認
油分析</td>
<td>3月
3月</td>
<td>東芝</td>
</tr>
<tr>
<td>515</td>
<td>燃料交換設備Ar系</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td>3月</td>
<td>東芝</td>
</tr>
<tr>
<td>521</td>
<td>燃料出入機本体</td>
<td>本体Aグリッパ
本体Aアダプタ
本体Aグリッパ駆動装置
本体Aドアバルブ
本体A可動ブロック
本体Aコフィン内筒
本体Aグリッパ駆動装置
本体Aグリッパ、アダプタ
本体Bグリッパ
本体Bドアバルブ</td>
<td>分解点検
分解点検
分解点検
分解点検
分解点検
分解点検
12月
12月
12.3〜16.11</td>
<td>5.10〜6.24
富士</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>燃料出入機冷却装置</td>
<td>電動弁、空操弁
（522MV8, 306, PSV27, 401, 28, 31, 110, 111, 112, 401）
9台
本体B直冷系弁（522MV304）</td>
<td>分解点検
分解点検</td>
<td>5.21〜6.18
12.3〜22</td>
<td>5.21〜6.18
富士</td>
</tr>
<tr>
<td>523</td>
<td>燃料出入機走行合車</td>
<td>給電装置</td>
<td>簡易点検</td>
<td>5.21〜6.11</td>
<td>46.1.8.9
富士</td>
</tr>
<tr>
<td>530</td>
<td>炉外燃料貯蔵設備</td>
<td>DPD真空ポンプ
DPD真空ポンプ
エクステンション弁</td>
<td>分解点検
分解点検
作動確認</td>
<td>7.6〜19
6.25〜7.2</td>
<td>7.6〜19
川重
富士</td>
</tr>
<tr>
<td>531</td>
<td>炉外燃料貯蔵槽</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>5.21〜6.11</td>
<td>5.21〜6.11
富士</td>
</tr>
<tr>
<td>533</td>
<td>炉外燃料貯蔵槽</td>
<td>空気冷却器（伝熱管部）B</td>
<td>開放点検</td>
<td>6.25〜7.19</td>
<td>5.21〜6.18
川重
富士</td>
</tr>
<tr>
<td>534</td>
<td>炉外燃料貯蔵槽</td>
<td>窒素ガス循環ブロワB</td>
<td>分解点検</td>
<td>6.25〜7.19</td>
<td>6.25〜7.19
川重
富士</td>
</tr>
<tr>
<td>538</td>
<td>窒素ガス置換系</td>
<td>真空ポンプ
電動弁、電磁弁、空操弁
（538MV624, PSV120, 122, 124, 126, 128, 140, 209, 210, 211, 212, 213, 314, 407, 408, 512, 513, 514, AV602, 604, 606, 608, 610, 612, 614, 617）
2台</td>
<td>分解点検
分解点検</td>
<td>5.17〜6.26
5.21〜6.18</td>
<td>5.17〜6.26
富士
富士</td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td>5.17〜6.26</td>
<td>5.17〜6.26
富士
富士</td>
</tr>
<tr>
<td>系統番号</td>
<td>系統名称</td>
<td>機器名称</td>
<td>点検内容</td>
<td>点検時期</td>
<td>点検社</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>571</td>
<td>水中台車</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>12.16 〜 12.20</td>
<td>富士</td>
</tr>
<tr>
<td>571</td>
<td>水中台車</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>12.16 〜 12.20</td>
<td>富士</td>
</tr>
<tr>
<td>574</td>
<td>燃料池水冷却浄化装置</td>
<td>循環ポンプA</td>
<td>分解点検</td>
<td>6.22 〜 6.23</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>熱交換器A</td>
<td>開放点検</td>
<td>6.23 〜 7.1</td>
<td>川重</td>
</tr>
<tr>
<td>582</td>
<td>新燃料検査装置</td>
<td>α線検出器</td>
<td>線源校正</td>
<td>4.16</td>
<td>富士</td>
</tr>
<tr>
<td>584</td>
<td>新燃料移送機</td>
<td>グリッパ</td>
<td>分解点検</td>
<td>11.15 〜 12.4</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>グリッパ駆動装置（ブルー等）</td>
<td>分解点検</td>
<td>11.15 〜 12.4</td>
<td>富士</td>
</tr>
<tr>
<td>586</td>
<td>地下台車</td>
<td>床ドアバルブ</td>
<td>開放点検</td>
<td>5.21 〜 6.11</td>
<td>富士</td>
</tr>
<tr>
<td>587</td>
<td>地下台車</td>
<td>循環プローブ</td>
<td>分解点検</td>
<td>11.24 〜 12.20</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td>新燃料予熱装置</td>
<td>空操弁(587AV1, 6, 10, 11) 4台</td>
<td>分解点検</td>
<td>12.3 〜 22</td>
<td>富士</td>
</tr>
<tr>
<td>610</td>
<td>気体廃棄物処理系</td>
<td>酸ガス圧縮機A, B</td>
<td>分解点検</td>
<td>5.26 〜 7.17</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>プライン循環ポンプB弁(AV406A, B) 2台</td>
<td>分解点検</td>
<td>5.26 〜 7.17</td>
<td>富士</td>
</tr>
<tr>
<td>620</td>
<td>液体廃棄物処理系</td>
<td>廃液処理水移送ポンプB弁(AV271) 1台</td>
<td>分解点検</td>
<td>5.15 〜 21</td>
<td>富士</td>
</tr>
<tr>
<td>640</td>
<td>共通保修設備</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td>5.19 〜 7.12</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>浄化ファンB</td>
<td>分解点検</td>
<td>5.19 〜 7.12</td>
<td>富士</td>
</tr>
<tr>
<td>641</td>
<td>固体廃棄物貯蔵プール設備</td>
<td>循環ポンプ</td>
<td>分解点検</td>
<td>6月</td>
<td>FTEC</td>
</tr>
<tr>
<td>500</td>
<td>計装設備</td>
<td>計器</td>
<td>単体 1883台</td>
<td>5月 〜 9月</td>
<td>富士</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>ルーブ 756台</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>健全性 113台</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第3.16-5表 平成5年度設備点検項目 (2/2)
<table>
<thead>
<tr>
<th>点検対象機器</th>
<th>月</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>月</td>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
<td>8月</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>日</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>燃焼設備</td>
<td>燃料出入機本体A</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVST床ドアバルブ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>地下台車床ドアバルブ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>置換系真空ポンプ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>燃料検査設備用真空ポンプ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>燃料出入機冷却装置</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ドアバルブガス置換系</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>新燃料検査装置</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>気体廃棄物処理系</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>廃ガス圧縮機A</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>プライン循環ポンプA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>廃液処理水移送ポンプB</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>廃棄物処理設備（3台）</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>共通保修設備</td>
<td>真空ポンプ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>処理系</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>処理系</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>共通</td>
<td>燃焼系</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>廃棄物処理系</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
第3.16-6表 H5年度設備点検 (2/2)

(参考：富士分)

<table>
<thead>
<tr>
<th>点検対象機器</th>
<th>年</th>
<th>H5年</th>
<th>H6年</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>月</td>
<td>11月</td>
<td>12月</td>
</tr>
<tr>
<td></td>
<td>日</td>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td>燃焼設備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料出入機本体B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料洗浄設備床ドアバルブ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水中台車床ドアバルブ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下台車新燃料予熱ブロワ</td>
<td></td>
<td>10 20</td>
<td></td>
</tr>
<tr>
<td>新燃料移送機グリッパ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料出入機冷却装置弁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下台車新燃料予熱装置弁</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第3. 16-7表　平成6年度設備点検項目 (1/2)

<table>
<thead>
<tr>
<th>系統番号</th>
<th>系統名稱</th>
<th>機器名稱</th>
<th>点検内容</th>
<th>点検時期</th>
<th>点検社</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>しゃべいプラグ</td>
<td>シール部</td>
<td>漏洩確認</td>
<td></td>
<td>東芝</td>
</tr>
<tr>
<td>511</td>
<td>燃料交換装置</td>
<td>本体</td>
<td>分解点検</td>
<td>11/6/10 ～12</td>
<td>東芝</td>
</tr>
<tr>
<td></td>
<td></td>
<td>バンタグラフ</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>炉内中継装置</td>
<td>燃料出入孔ドアバルブ</td>
<td>開放点検</td>
<td>11.28～12.10</td>
<td>東芝</td>
</tr>
<tr>
<td>514</td>
<td>燃料交換設備</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td></td>
<td>東芝</td>
</tr>
<tr>
<td></td>
<td>アルゴンガス系</td>
<td>安全弁，減圧弁</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>燃料出入機本体</td>
<td>本体Aグリッパ</td>
<td>分解点検</td>
<td>10.11～12.19</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aアダプタ</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aグリッパ駆動装置</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aドアバルブ</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体A可動ブロック</td>
<td>簡易点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体Aコフィン内筒</td>
<td>開放点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>炉外燃料貯蔵設備</td>
<td>DPDP真空ポンプ 1台</td>
<td>分解点検</td>
<td>11.14～12.8</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPDP真空ポンプ 1台</td>
<td>性能確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>予熱ヒータ</td>
<td>性能確認</td>
<td>12.5～21</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接点式ヒータ</td>
<td>作動確認</td>
<td>12.5～20</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>漏洩検出器 96台</td>
<td></td>
<td></td>
<td>川重</td>
</tr>
<tr>
<td>531</td>
<td>炉外燃料貯蔵槽</td>
<td>回転ラック駆動装置軸封部</td>
<td>分解点検</td>
<td>11.12～12.26</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>10.11～11.26</td>
<td>富士</td>
</tr>
<tr>
<td>533</td>
<td>炉外燃料貯蔵槽 冷却系</td>
<td>循環ポンプA，B，C</td>
<td>性能確認</td>
<td>12.5～20</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>循環ポンプ用冷却ファン A，B，C</td>
<td>分解点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>炉外燃料貯蔵槽 一次補助装備</td>
<td>汎用ポンプ</td>
<td>性能確認</td>
<td>10.11～11.26</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>汎用ポンプ用冷却ファン 6台</td>
<td>分解点検</td>
<td>10.26～28</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ブラギング計</td>
<td>性能確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>炉外燃料貯蔵槽 一次補助装備</td>
<td>電磁ポンプ</td>
<td>性能確認</td>
<td>11.15～22</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電磁ポンプ用冷却ファン 6台</td>
<td>交換</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ブラギング計</td>
<td>性能確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td>床ドアバルブ</td>
<td>分解点検</td>
<td>10.11～11.26</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ線検出器</td>
<td>線源校正</td>
<td>10.26～28</td>
<td>富士</td>
</tr>
<tr>
<td>550</td>
<td>燃料洗浄設備</td>
<td>真空ポンプ</td>
<td>分解点検</td>
<td>11.15～12.8</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電動弁</td>
<td>分解点検</td>
<td>11.24～12.8</td>
<td>富士</td>
</tr>
<tr>
<td>系統番号</td>
<td>系統名称</td>
<td>機器名称</td>
<td>点検内容</td>
<td>点検時期</td>
<td>点検社</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>572</td>
<td>燃料移送機</td>
<td>グリッパ駆動装置 走行台車</td>
<td>性能確認 簡易点検</td>
<td>12.7 〜13</td>
<td>富士</td>
</tr>
<tr>
<td>574</td>
<td>燃料池水 冷却浄化装置</td>
<td>循環ポンプB</td>
<td>分解点検</td>
<td>12.7 〜21</td>
<td>川重</td>
</tr>
<tr>
<td>582</td>
<td>新燃料検査装置</td>
<td>α線検出器</td>
<td>線源校正</td>
<td>12.20.21</td>
<td>富士</td>
</tr>
<tr>
<td>584</td>
<td>新燃料移送機</td>
<td>新燃料方位調整治具</td>
<td>性能確認</td>
<td>12.15 〜20</td>
<td>富士</td>
</tr>
<tr>
<td>587</td>
<td>地下台車 新燃料予熱装置</td>
<td>冷却器</td>
<td>開放点検</td>
<td>11.4 〜13</td>
<td>富士</td>
</tr>
<tr>
<td>500</td>
<td>系統付電源盤</td>
<td>電源盤（IVR、VVF） 7面</td>
<td>詳細点検</td>
<td>11.29 〜12.6</td>
<td>富士</td>
</tr>
<tr>
<td>610</td>
<td>気体廃棄物処理系</td>
<td>廃ガス圧縮機A</td>
<td>分解点検</td>
<td>10.14 〜29</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>廃ガス圧縮機B プラインチラーユニットA、B</td>
<td>分解点検 簡易点検</td>
<td>12.2〜20 11.30〜2.14</td>
<td>富士</td>
</tr>
<tr>
<td>620</td>
<td>液体廃棄物処理系</td>
<td>シール水ポンプA</td>
<td>分解点検</td>
<td>11.14 〜24</td>
<td>富士</td>
</tr>
<tr>
<td>640</td>
<td>共通保険設備</td>
<td>燃焼機器洗浄槽循環ポンプ 制御弁（CV55.242） 2台</td>
<td>分解点検</td>
<td>11.22 〜12.1 11.29〜12.19</td>
<td>富士</td>
</tr>
<tr>
<td>641</td>
<td>固体廃棄物 貯蔵プール設備</td>
<td>循環ポンプ</td>
<td>分解点検</td>
<td>12.6〜21</td>
<td>川重</td>
</tr>
<tr>
<td>500</td>
<td>計装設備</td>
<td>計器 単体 1050台 ループ 650 健全性 110台</td>
<td>計器校正</td>
<td>10.3〜11.2.2</td>
<td>富士</td>
</tr>
<tr>
<td>番号</td>
<td>系統名</td>
<td>10/</td>
<td>11/</td>
<td>12/</td>
<td>17.1/</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>521</td>
<td>燃料入れ替え装置A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>燃料弾性装置 (DFP 真空, 電磁, 防振, 試験, 給油)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>燃料弾性装置 回転, 驅動装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>燃料弾性装置床 (6/6) 燃料検査床 (7/7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>燃料洗浄装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>572</td>
<td>燃料移送装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>574</td>
<td>燃料地水冷却装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>578</td>
<td>地下台車新燃料予熱装置 冷却器</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>気体燃料物処理装置 風圧圧縮機A, B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>気体燃料物処理装置 グラフィック エンジンA, B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>液体燃料物処理装置 ケトル 水冷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>共通排気装置 燃料取扱装置洗浄槽装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>共通排気装置 Φ (2台)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>共通排気装置排気装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

実績工程：実績工程
予定工程：予定工程
第3.16-8表 平成6年度設備点検実施工程表

<table>
<thead>
<tr>
<th>項目</th>
<th>10/</th>
<th>11/</th>
<th>12/</th>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>592</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>系統番号</td>
<td>系统名称</td>
<td>機器名称</td>
<td>点検内容</td>
<td>点検時期</td>
<td>点検社</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>511</td>
<td>燃料交換装置</td>
<td>驱動部、本体、グリッパ昇降駆動装置</td>
<td>分解点検 開放点検</td>
<td>H7/4〜8 H7/11〜H8/2</td>
<td>東芝</td>
</tr>
<tr>
<td>072</td>
<td>原子炉機器輸送ケーシング</td>
<td>原子炉機器輸送ケーシング</td>
<td>開放点検</td>
<td>H7/12〜H8/2</td>
<td>東芝</td>
</tr>
<tr>
<td>073</td>
<td>プラグ取扱機</td>
<td>プラグ取扱機</td>
<td>開放点検</td>
<td>H8/4予定</td>
<td>東芝</td>
</tr>
<tr>
<td>515</td>
<td>燃料交換機器置場</td>
<td>滅圧弁 2台</td>
<td>分解点検</td>
<td>H8/2.27〜3.14</td>
<td>川重</td>
</tr>
<tr>
<td>521</td>
<td>燃料出入機本体A</td>
<td>グリッパ、アダプタグリッパ駆動装置ドアパルプ</td>
<td>分解点検</td>
<td>H7/12.18〜H8/2.15</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>可動ブロック駆動装置</td>
<td>性能確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>コフィン内筒</td>
<td>開放点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>点検架台・ボンベラック改造</td>
<td>製作、改造</td>
<td>H7/11.21〜H8/3.2</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>炉外燃料貯蔵設備</td>
<td>DPD真空ポンプ 1台</td>
<td>分解点検</td>
<td>H8/2.16〜3.15</td>
<td>川重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPD真空ポンプ 1台</td>
<td>簡易点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>炉外燃料貯蔵槽</td>
<td>プラグ取扱機、プラグ置場</td>
<td>簡易点検</td>
<td>H7/11.12</td>
<td>富士</td>
</tr>
<tr>
<td>533</td>
<td>炉外燃料貯蔵槽冷却系</td>
<td>空気冷却器入口ダンパ</td>
<td>リミットスイッチ調整</td>
<td>H8/3.12〜3.13</td>
<td>川重</td>
</tr>
<tr>
<td>574</td>
<td>燃料池水冷却浄化装置</td>
<td>プレコート材供給ポンプ</td>
<td>分解点検</td>
<td>H8/2.16〜2.20</td>
<td>川重</td>
</tr>
<tr>
<td>541</td>
<td>燃料検査設備</td>
<td>γ線モニタ</td>
<td>線源校正作動確認</td>
<td>H8/2.5〜2.7</td>
<td>富士</td>
</tr>
<tr>
<td>582</td>
<td>新燃料検査装置</td>
<td>α線モニタ</td>
<td>線源校正作動確認</td>
<td>H8/2.8〜2.9</td>
<td>富士</td>
</tr>
<tr>
<td>610</td>
<td>気体廃棄物処理系</td>
<td>廃ガス圧縮機B</td>
<td>分解点検</td>
<td>H8/2.26〜4.8</td>
<td>富士</td>
</tr>
<tr>
<td></td>
<td></td>
<td>再生ガスプロセスB</td>
<td>分解点検</td>
<td>H8/3.4〜3.12</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>共通保険設備</td>
<td>燃焼機器洗浄槽床ドアパルプ</td>
<td>分解点検</td>
<td>H8/2.20〜3.29</td>
<td>富士</td>
</tr>
<tr>
<td>番号</td>
<td>機器名</td>
<td>点検内容</td>
<td>点検時期</td>
<td>点検責任者</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>流量調整弁(CV 5)</td>
<td>1台</td>
<td>H8/2.27 ～3.7</td>
<td>川重川重</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ろ過器</td>
<td>1基</td>
<td>H8/2.26 ～3.5</td>
<td>川重川重</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>計器点検</td>
<td>単体: 101台 ループ: 116</td>
<td>H8/1.10 ～3.14</td>
<td>富士</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>計器点検</td>
<td>ループ: 23</td>
<td>H8/2.26 ～3.8</td>
<td>富士</td>
<td></td>
</tr>
<tr>
<td>系統番号</td>
<td>設備名</td>
<td>期間</td>
<td>点検工程</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>燃料交換機器置場</td>
<td>H7/11月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>压力弁 2台 分解点検</td>
<td>12月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>燃料出入機本体 A 分解点検</td>
<td>H8/1月</td>
<td>工場での点検</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>分解点検</td>
<td>2月</td>
<td>取付</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>燃料貯藏設備 DPD 分解点検14台</td>
<td>3月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>空気冷却器冷却液冷却冷卻系</td>
<td>4月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>燃料検査装置</td>
<td>8月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>561</td>
<td>燃料池水冷却装置</td>
<td>9月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>582</td>
<td>新燃料検査装置</td>
<td>10月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>気体亜密性処理系統</td>
<td>11月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>原6A圧縮機B 分解点検</td>
<td>12月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>共通管理設備</td>
<td>1月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>線電気遮蔽装置</td>
<td>2月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>固体貯蔵装置</td>
<td>3月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>空気作動弁1台 分解点検</td>
<td>4月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>燃料取扱設備</td>
<td>5月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>計器点検 NVP:116 単体101台</td>
<td>6月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>放射性廃棄物処理装置</td>
<td>7月</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>計器点検 NVP:23</td>
<td>8月</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
４．今後の課題

これまでの燃焼設備の運転、保守経験から今後、検討していくべき問題点、設備改造及び保守の高度化等に係る懸案事項について以下に述べる。

（1）点検基準の見直し
（2）点検時期の検討
（3）しゃべいプラグの分解点検
（4）炉内常設型燃料交換設備の開発
（5）グリッパ回転機能付燃料交換装置の開発
（6）燃料出し機体Aドリップパン予熱ヒータ改造
（7）燃料出し設備使用済燃料冷却時の運転制御の確認
（8）E V S T配管予熱ヒータ電源及び制御の多重化
（9）E V S T差圧式N a 漏えい検出装置（D P D）の改造
（10）燃料検査槽冷却配管の切替ライン改造
（11）燃料洗浄槽除去機能向上対策
（12）燃料洗浄槽出口フィルタ交換装置の改造検討
（13）燃料缶詰装置缶固定クラッチの改造
（14）使用済燃料貯蔵容量の増加対策検討
（15）使用済燃料缶詰なし貯蔵の検討
（16）缶詰缶再使用の検討
（17）新燃料予熱装置N a ミスト移行防止の検討
（18）運転時間短縮化のシステム検討
（19）燃焼操作中央監視盤の高度化検討
（20）運転支援システムの追加検討
（21）保守管理データ収集装置の追加検討
（22）共通修理設備機器洗浄設備水素濃度検出応答時間の短縮化
（23）メンテナンススケーレンの選別操作化

次項以降に懸案事項の内容を記す。
4.1 点検

（1）点検基準の見直し

平成4年度に燃焼設備の点検基準を作成したが基本的な考え方を示したもので、各機器の使用状況、診断の材料、使用環境等を考慮して個別に決めていく必要がある。これまでの点検結果から、同一種の類似機器でも点検の要求度が異なり、限られた点検予算の中で最大の効果を得るためには、合理的な点検が必要でありこれまでの点検結果を踏まえ機器毎の点検基準の見直しを行う。第4.1-1表に燃焼設備点検基準表を示す。

（2）点検時期の検討

これまで平成4年度から実施してきた燃焼系の設備点検は、

① 燃焼設備は原子炉運転に直接影響を与えないことから、通常運転中においても点検が行える。

② 点検時にM／Bで他の設備の点検と重なる点検エリア及びメンテナンススケーリー等の調整が難しく点検期間も長くなる。

等の理由から、燃料出入口及び燃料出入口通路の機器の点検は全体の設備点検工程よりも先行して行い、他の設備の点検とM／Bで干渉がないように行ってきている。但し、これまで燃料交換及び燃料処理運転を1年間サイクルを通して実施していないことから、定常運転になった場合の運転と点検時期の検討、調整が必要である。

特に燃料出入口本体はA、Bあり、片方の点検で約2ヶ月かかっている。定検時には最初に燃料交換を行うことから燃料出入口を最初に使うこととなり、官庁検査等との関係からどの時期に何を点検することがよいか各種の条件を考慮して合理的な方法を検討する必要がある。

（3）しゃべいプラグの分解点検

運転、保守実績でも記載したが、回転プラグの稼働実績は設計値を超えており、早期に分解点検してエラストマーシールの健全性を確認するとともに今後の点検周期に反することもある。回転プラグの分解点検は、約4ヶ月要すとの検討結果があり、当然のことながら経費についても膨大になることから合理的な点検周期を設定することが、「もんじゅ」の経済性を評価する上で重要である。
<table>
<thead>
<tr>
<th>項目</th>
<th>考慮すべき項目</th>
<th>出力</th>
<th>実施すべき頻度</th>
<th>対象機器の例</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料集団体のうち、運転を担当する機器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料集団体を支える施設 (リプレ相当)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料集団体の上部を、下部を</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動シール関係 (オーバル等)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定シール関係</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷却手段</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各機器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>容器・バウンダー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動シール関係 (オーバル等)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定シール関係</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷却手段</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各機器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>容器・バウンダー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動シール関係 (オーバル等)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定シール関係</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷却手段</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各機器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>容器・バウンダー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動シール関係 (オーバル等)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定シール関係</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷却手段</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各機器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可動型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. 2 設備改造、高度化検討

(1) 燃料交換設備

① 炉内常設型燃料交換設備の開発

燃料交換に先立って、FHM、IVTMを炉上部のしゃだんブラグに据付作業（燃交準備作業）を行うが、設計上は24時間労働で約5日としている。SKSにおいて準備作業時間についても確認したところ、実際の作業は設計上の時間を僅かに超える程度であったが、作業員の確保、夜間作業に伴う労働安全等の問題から、二交替による16時間/日程度で実施して10日程度かかった。その後、燃料装荷、炉内流速分布試験等でFHM等を据付だが、やはり作業員の確保が難しいことと管理区域内作業になったことから10時間/日・人的制約があり1班（約15人）で作業を実施することとなり、更に種々の制約等あって15日程度かかっている。1班による準備作業の実績は1回しかないが、その結果から今後の準備作業期間を予測し、13日とした。燃交運転までには更にFHM等の機能確認、官庁の使用前検査の受検等を行うことになり、それに5日要することとなっている。燃交運転に約16日、そしてFHM、IVTMを除す燃交後始末作業に10日とし、原子炉起動前試験を7日想定して、単純には49日も燃交期間がかかることがある。後始末と起動前試験での並行作業を考慮しても45日程度と想定され、設計の5割増しである。その要因は準備、後始末に対する設計条件が現実離れしていたことにある。今後、燃料交換の実績を積むことにより、準備、後始末の合理的な手順、更に作業員の内定度がますことにより、短縮されていくものの設計値30日には遠く及ばないものと考えられる。

・燃料交換は2回/年あることから運転工事への影響があること
・大型重ね物の移動を伴うことから多くの熟練作業者の確保と労働災害に十分な対策が必要なこと
・炉上部の重要な機器の上での作業であることから、重要機器損傷に十分な注意が必要であり作業員の心理的負担が大きいこと
・FHM、IVTMに付着した放射化したNaにより作業員が被ばくすること
・多くの熟練作業者を確保して長期間の作業となることから作業経費が多くかかることも
等の問題点があり、炉内常設型燃料交換設備の開発、検討を進める必要がある。

② グリッパ回転機能付燃料交換装置の開発

炉心への燃料挿入時のセルフオリエンテーション機能は、新燃料方位調整装置及び燃料交換装置と回転プラグによる別アドレスの選択等により対応可能な状況になっている。

現状、燃料交換設備側では炉内シャフリングに対応できる設備対応はとられていない。しかし、燃料の経済性や高燃焼度燃料のスエリング緩和対策等から、今後、炉内シャフリングの実施が検討されるものと思われる。その場合は、燃料交換装置と回転プラグによる別アドレスの選択等により対応を行うこととなるが、その運転は手動操作によらざるを得ないことから運転時間が通常の燃料交換（約90分）の2倍以上かかるものと推定される。そこで、グリッパに回転機能を持ったFHMの導入の検討を行う必要がある。

（2）燃料出入口設備

① ドリップパン予熱ヒータ改造

燃料出入口設備は内側炉心燃料装荷運転中にグリッパ昇降異常事象を起こしたが、昇降駆動装置へのヒータ敷設とスクレーパ部の改造により、同事象のトラブルの再発はなくなった。しかしながら、スクレーパのNα切れが良くなったことによる副産物として、ドアパルプ弁体上部への付着Nαが増加しドアパルプ全図不可の事象が発生した。グリッパ及び燃料等から滴下するNαはドリップパンで受けるが、弁体の上面のドリップパン周辺の温度が低く、弁体上に滴下したNαがドリップパンに流れ落ちないで固化してしまうことにより、上面にNαが溜まっていたものと推定された。そこで平成7年度点検において、ドリップパン上部の温度を上げるためドリップパン受けに敷設しているヒータを上部まで敷設し、昇温試験を実施したところ約10℃の上昇を確認したが約70℃であり、Nα付着防止のために十分なのか、今後、使用し分解点検した際に確認していくこととなる。

② 使用済燃料冷却時の運転制御の確認

燃料装荷を通じて燃料交換運転に係る実証はほぼ確認できた。また、燃料処理運転についても、新燃料のEVTシート及び模擬体の洗浄処理を通じて燃料出入口機の性
能をほぼ確認できた。しかし、まだ、崩壊熱のある使用済燃料の取扱いを行っていないおらず、燃料冷却運転制御がうまく行えるよう燃料交換等をとおして確認していく必要がある。特に燃料交換時はボット移送による間接冷却運転を行うが、コフィン出口温度で冷却運転の制御をすることとしており、その制御性に十分注意して、初期の燃料交換を慎重に行う必要がある。

（4）炉外燃料貯蔵設備

① 配管予熱ヒータ電源及び制御の多重化

・EVスト系予熱電源盤のうち、予熱電源盤DE-1、DE-2は受電先が1系統のみであることから、系統がNaドレン状態でも運用上Naドレンできない部分については、仮設電源の給電による予熱の確保を行っている。よって、EVスト系常用予熱電源盤電源のメンテナンス時に考慮し、3DE-1、3DE-2の停電時対策として、EVスト外容器予熱電源として使用している予熱電源盤Eからの受電を可能にする設備改造を行い仮設電源対応作業の合理化を図る。

・予熱制御は燃焼系計算機で行っているが、計算機の点検及びシステムダウン時には、一次補助Na系はドレンを行わなければならない。しかしながら、構造的にドレンができない部分があり放置しておくとフリーズすることとなり、その後の復旧に時間と労力がかかること。そこでドレンできない部分について予熱制御が行えるようパソコン、シーケンサを組み合わせた予熱監視制御バックアップシステムを追加し、予熱設備の信頼性的向上と運転員の負担軽減を図る

② 差圧式Na漏えい検出装置（DPD）の改造（もじょテクノロジー MS-95-085）

・DPDは冷却系（空気雰囲気）は配管表面のアニュラス部から、1次補助Na系（窒素ガス雰囲気）は部屋の雰囲気をポンプにより循環し、循環ラインに取り付けているフィルタの差圧上昇を検出して、Na漏えいを検知するものである。

これまで運転してきた結果から、Na漏えいがなくても冷却系は空気雰囲気にあることから、外気等の影響を受けバックグラウンドが約1ヶ月で警報設定値近くまで上昇することから、その部屋フィルタの交換をしており場合によっては7日程度で交換した実績もあり。また、初期差圧にバラツキがあり、全て一つの警報設定値で管理するのちは、早期検知の観点から必ずしも安全側にあるとは限らない。
そのようなことから、平成8年度点検時に改造すべきNα漏えい検出補助装置の追加を計画している。これは既設の装置からの差圧信号をパソコンに入力し、上昇率を計算してNα漏えいを早期に検知し、監視注意警報を発報するので、現設備を補完する目的で設置する。その後、実証試験を行って将来的には現設備に置き換えることも検討していく必要がある。

・ポンプは無給油式のカーボンペーンを使用しており、運転に伴ってベーンが摩擦するが、ポンプの出入口側にフィルタが設置されていないことが平成6年度点検で分かった。このまま放置するとバックグラウンド上昇の要因になることは勿論、サングリング管の閉塞、配管路等へ入室する場合の作業環境の悪化等に繋がることから、H7年度点検において、代表ラインにフィルタを設置して、流量、差圧変化等を測定し系統としての性能を確認し今後の改修に反映する。（もも グラフ MS-95-95）

（5）燃料査査設備

① 検査槽冷却配管の切替えライン改修

燃料査査設備は原リ炉運転中にFFD、遅発中性子法等で燃料破損が確認された場合に原リ炉を停止して、破損の疑いのある燃料を燃料査査槽に移送して破損燃料を同定するものである。しかし、現状は燃料交換の際に破損がなかったことを代表燃料にて燃料査査設備で計測することにより確認することが燃料交換時の官庁査査になりつつあることを技術課から言われている。

査査槽に燃料を受入れにあたっては、燃料の崩壊熱除去のため査査槽冷却プロラの運転を行うこととなるが、プロラからの冷却配管は通常は燃料浄化槽の異常時冷却のラインに接続されており、ライン変更の際はエルボを付け替える作業を行わなければならない。当初の運転方法を変更することになったことから、エルボをテライ構造に変え、電動式切替え弁を追加して容易にライン切替えができるようにし、切替え作業の低減と作業ミスのないようインターロックを追加し、信頼性の向上を図る。
（6）燃料洗浄設備

① 脱湿機能向上対策

燃料洗浄槽に燃料等を受入れる際の洗浄槽の乾燥度が十分でなかったことから、模擬体洗浄処理運転時に燃料出入撚本体Aのドアバルブ及びグリッパの動作不良が生じ、仮設ヒータの追加、運転フローの変更等で改善されることが確認された。そこで仮設ヒータを本設化する等の対策をとり脱湿機能の向上を図る。

② 真空ポンプの構造変更

脱湿機能向上確認試験において、ガス置換時に真空を保持する真空乾燥の併用により所定の露点を満足している。しかし、真空ポンプは油回転式を使用しており、これまでも運転に伴い潤滑油に水分が混入しており、ポンプへの影響が懸念されていたが、真空乾燥の併用により混入する水分量が顕著に増大し油回転式ポンプでは仕様に耐えないことが明らかになった。そこで水封式真空ポンプへの変更が提案されている。

③ 洗浄槽出口フィルタ交換装置の改造検討

洗浄槽出口フィルタの差圧が上昇し所定の値に達するとフィルタを交換することとしており、設計上は2回／年としている。

フィルタ交換は、専用の交換装置を用いて行い、交換装置に使用後のフィルタを収納したままA／BからM／Bへ輸送し、固体廃棄物貯蔵プール中に貯蔵するが、輸送時に屋外をトラックで運ぶが、現状、フィルタ交換装置のドアバルブは機密構造をしておらず改造を検討する必要がある。

（7）燃料缶詰設備

① 缶固定クラッチの改造

SKSにおいて缶蓋ボルトの締付トルクが、当初所定の値を満足しない事態が生じ、ナットランナへの供給空気圧力をアップするとともに2回締めを4回にした。ところが、空気圧力を上昇したことで缶が回転してボルトとナットランナに位置ズレが生じるようになった。そこで缶固定アームの支点を変える等により缶固定力を増大させたが、駆動装置のクラッチにすべりが生じるようになり、駆動軸を補強して所定の機能を確認してSKSは終了した。ところが、今後、使用済燃料の缶詰処
理運転を行っていく場合、2体／日で約80体／モードを2回／年となり、その連続使用に対する耐久性に不安があった。そこで、H8年度点検時に長期休止状態の燃料缶詰装置の分解点検を予定しており、その中で缶固定クラッチの改造等を計画している。その改造においては、缶固定力のアップだけでなく、それにより4回締めを当初どおり2回締めに戻す等運転時間短縮化への変更も合わせて行うよう検討を進めている。

（8）水中燃料貯蔵設備

① 使用済燃料貯蔵容量の増加対策検討

貯蔵ラックの貯蔵容量は、使用済燃料分が1412体でこれは約15サイクル分で約7〜8年で満杯になる。「もんじゅ」の計画段階から高速炉燃料の再処理の開発状況を踏まえながら、使用済燃料プールは増設することをしていた。しかし、貯蔵ラックの改造をして新設備の貯蔵量の増加を図ることも一つの選択肢としており、経済性、「ふげん」等においても実施されている。「もんじゅ」において、どのようにするかは今後の大きな課題である。

2次系統Na漏えい事故により、この課題は一時棚上げとなるが、長期的な観点で検討をしていく必要がある。

② 置き換え貯蔵の検討

FBRの使用済燃料は「常陽」、「もんじゅ」において缶詰缶貯蔵としているが、将来の実証炉、実用炉を想定し、安全性の確保を第一とし、経済性を考慮して裸貯蔵の可能性の検討、並びに実証のための確認を「常陽」の実績も踏まえて検討していく必要がある。

（9）新燃料受入貯蔵設備

① 収納缶再使用の検討

使用済燃料の再処理する場合に再処理施設にキャスクで燃料を輸送するが、缶詰缶に収納した状態で運ぶことから、使用済缶詰缶が返却されるが、缶詰缶の汚染状況、除染条件、缶詰缶貯蔵ラックの管理条件、保管場所の条件等を整理し、再使用できるか固体廃棄物にするか検討していく必要がある。
（10）燃焼系計算機システム

① 運転時間短縮化のシステム検討

燃料交換は約90分/体の性能を燃料装置による運転でも実証できた。しかし、設計は10体/日（16時間）としている。燃料装置は全数管理立会検査となったことと大量の燃料交換を行うのが初めてだったこと等を考慮して、最大8体/日で計画し、実施できた。しかし、設計時に想定した時間のフロー通りにできており、無駄な時間待ちと思われるものがある。従って、現設備の状況を確認して運転フローに無駄がないか見直し、運転時間短縮へのシステム変更の検討をする必要がある。

燃料処理についても、新燃料移動装置における時間管理を温度管理に変更とか燃料洗浄設備の脱水機能向上対策のためのソフト変更等を行って個別の設備の運転性能の向上改善を図っているが、それに伴い運転時間の変更も生じている。そこで、SKS時に確認した燃料処理貯蔵運転の運転時間に対する再評価が必要である。

② 燃焼操作中央監視盤の高度化検討

燃料交換及び燃料処理運転共に設計通り運転自動運転が円滑に行われている。しかし、燃料処理運転における洗浄運転は状態に変化がほとんどなく、運転員は退屈な時間を送っている。そのような状況を少しでも解消すべく運転時間の短時間化を表示し、秒単位の数値が変化するようにしたり、サブブレーキポイントの切替え時にチャイムを鳴らす等の改善を取ってきているが、基本ソフトの範囲での限られた改造に終わっている。また、燃焼設備1TVにマイク付カメラを追加したが、これに
より運転員が臨場感を持って運転を行うようにとの願いを込めたものである。
燃料装荷、模擬体処理で運転を重ねてきた経験から、ヒューマンエラーの防止や
人間工学、心理学等からより良い運転監視盤の検討が必要と考える。

③ 運転支援システムの追加検討

燃料設備はこれまでの運転ではほぼ自動運転で円滑に実施できることが実証されて
いる。しかし、その間にも何度かシーケンス変更等の軽微なトラブルを経験してお
り、これまで崩壊熱のない燃料等を扱っていたことから、復旧までの時間には余
裕があったが、今後は使用済燃料を扱うことになることから軽微なトラブルも緊急
性が要求されることから、これまで経験したトラブル及び対処してきた方法等
をパソコンに収録し復旧に対する運転手順を運転員にガイドする支援システムの検
討を進める必要がある。

④ 保守管理データ収集装置の追加検討

燃料設備の機器の起動、停止について、現在、印字により記録されておりトラプ
ル時の機器の動作シーケンスの確認等に使用している。順調に運転されている場合
は、運転データが単に記録されるだけで何ら利用されていない。そこで、動作デー
タをパソコンに収集し統計処理して、各機器の動作データとトラブルとの相関関係
、稼働実績に基づく定量的な根拠による合理的な点検周期を決定のための基礎デー
タとして有効活用を図る。

（11）共通保修設備

① 機器洗浄設備水素濃度検出応答時間の短縮化

2次系小型機器洗浄槽の運転を行ったところ、水素濃度監視の検出時間に約10
分かかり、槽内の反応が収まった後で設備の運転が停止する状況となっており、第一
に水素濃度が4%を越えないような運転方法を確立することになるが、万一、
水素濃度が越えるような事態が発生した場合は速やかに運転停止されるよう検出配
管の短縮化、口径拡大等の改造を検討する必要がある。
(12) その他

① メンテナンスクレーンの遠隔操作化

メンテナンスクレーンは大型重量物の移動、運搬を頻繁に行うが、運転席が床から約15mと高所にあり、機器の保護及び労働安全の観点から、床上操作ができる無線式遠隔操作への設備改造を早期に実施していく必要がある。
燃料取扱貯蔵設備は設備移管後、3年余にわたり、「もんじゅ」の性能試験の初期において運転実績を積み重ね重質な運転、保守係る経験をしてきた。この間種々の異常、トラブル等があったが事前に至らず性能試験工法への影響はなかった。関係者の迅速な対応、日常の地道な点検等の実施に感謝するだしいです。

燃料取扱貯蔵設備はFBRの特徴である

①ウラン-プルトニウム混合酸化物燃料を使用する。
②冷却材としてナトリウムを取り扱う。

の両方に直接係わる設備で、「もんじゅ」の設計においては、主要機器の大型モックアップ装置による種々のR&Dの成果やFBRの先輩である「常陽」の運転、保守経験が反映されている。

しかしながら、試験と実際の使用状態の相違、「常陽」に比べ取扱対数の増加、寸法・構造的なスケールアップ等により、これまで経験しなかったトラブル等もあり、FBRの奥の深さを感じている。

これまで順調に運転が行えた要因は、

(1) R&D及び「常陽」の運転経験の成果が設計製作に反映された。
(2) SKSにおいて十分に初期トラブルを出し、その対策が取られた。特に遠隔自動運転方式したことから、運転シーケンスのミスマッチをSKS時に摘出、改善が行われた。
(3) SKS段階から、燃料グループとしてプラント第一課・二課の担当者が一体となって試験にあたり、設備移管後も運転－保守の連携が円滑に図られてきた。
(4) SKSに引き続いて性能試験期間中も設計、製作、据付を行ったメーカの積極的な協力が得られた。
(5) 設備の使用状況に応じた予防保全を目的とした保守点検を行い、問題点の早期発見、早期対策が取られた。

等が上げられる。これからも円滑な運転の実施に努めるとともに、更に設備改善を進め、運転性及び保守性が良く、将来の運転コスト評価を考慮しながら、より安全で信頼性の高い燃料取扱貯蔵設備に育てていきたい。
6. 参考図書

6.1 PNC報告書
（1）「もんじゅ」建設のあゆみ No8−3
燃料取扱貯蔵設備設計工事 （PNC PN2440 91-001）

6.2 設計図書

<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>系統設計仕様書 燃料取扱及び貯蔵設備 D31-500</td>
</tr>
<tr>
<td>2</td>
<td>系統設計仕様書 しゃべいプラグ窒素ガス冷却系 D31-021-01</td>
</tr>
<tr>
<td>3</td>
<td>系統設計仕様書 しゃべいプラグアルゴンガス系 D31-022-01</td>
</tr>
<tr>
<td>4</td>
<td>系統設計仕様書 しゃべいプラグシリコンオイル循環系 D31-023-01</td>
</tr>
<tr>
<td>5</td>
<td>系統設計仕様書 しゃべいプラグ持上油圧系 D31-025-01</td>
</tr>
<tr>
<td>6</td>
<td>機器設計仕様書 しゃべいプラグ本体 D31-026-01</td>
</tr>
<tr>
<td>7</td>
<td>系統設計仕様書 燃料交換設備 D31-510-01</td>
</tr>
<tr>
<td>8</td>
<td>系統設計仕様書 燃料出力設備 D31-520</td>
</tr>
<tr>
<td>9</td>
<td>系統設計仕様書 截外燃料貯蔵設備 D31-530</td>
</tr>
<tr>
<td>10</td>
<td>系統設計仕様書 燃料検査設備 D31-541</td>
</tr>
<tr>
<td>11</td>
<td>系統設計仕様書 燃料洗浄設備 D31-550</td>
</tr>
<tr>
<td>12</td>
<td>系統設計仕様書 燃料缶詰設備 D31-560</td>
</tr>
<tr>
<td>13</td>
<td>系統設計仕様書 水中燃料貯蔵設備 D31-570</td>
</tr>
<tr>
<td>14</td>
<td>系統設計仕様書 新燃料受入貯蔵設備 D31-580</td>
</tr>
<tr>
<td>15</td>
<td>燃取系計算機機能仕様書 燃取系計算機システム D55-732-02</td>
</tr>
<tr>
<td>16</td>
<td>燃取系計算機機器仕様書 燃取系計算機システム D55-732-01</td>
</tr>
<tr>
<td>17</td>
<td>プロセス運転監視機能仕様書 燃取系計算機システム D55-732-03</td>
</tr>
<tr>
<td>18</td>
<td>自動化運転機能仕様書 燃取系計算機システム D55-732-04</td>
</tr>
<tr>
<td>19</td>
<td>燃料所在管理機能仕様書 燃取系計算機システム D55-732-05</td>
</tr>
<tr>
<td>20</td>
<td>系統設計仕様書 共通保修設備 機器洗浄設備 D31-640</td>
</tr>
<tr>
<td>21</td>
<td>系統設計仕様書 共通保修設備 2次系機器洗浄設備 D31-640F-MP371</td>
</tr>
<tr>
<td>22</td>
<td>系統設計仕様書 共通保修設備 2次系小型機器洗浄設備 D31-640F-MP389</td>
</tr>
<tr>
<td>23</td>
<td>系統設計仕様書 固体廃棄物貯蔵プール設備 D31-641</td>
</tr>
</tbody>
</table>

6.3 参考資料
（1）燃取設備運転実績表（TKS, SKS） 1/3 3/3
（2）燃料交換設備 SKS実績工程
<table>
<thead>
<tr>
<th>系統番号</th>
<th>燃料供給素手動装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>520</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12345678901112</th>
</tr>
</thead>
<tbody>
<tr>
<td>240体/年（120体/年）</td>
</tr>
</tbody>
</table>

記号説明：\(\triangledown \)が付いているE。TKS。SKS。点検周期。
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#571</td>
<td>571</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>#572</td>
<td>572</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>#581</td>
<td>581</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>#582</td>
<td>582</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

記号説明：▽ 出付完了 E TKS SKS 検査時期

燃料交换体数 : 240体／年 (1体) 120体／年 (2体) 8体／年 (3体)

D/P 取扱体数 : 26体／年 (1体) 8体／年 (2体) 8体／年 (3体)
<table>
<thead>
<tr>
<th>系統 No</th>
<th>年月</th>
<th>平成元年（1989）</th>
<th>平成2年（1990）</th>
<th>平成3年（1991）</th>
<th>平成4年（1992）</th>
<th>運転実績（日）</th>
<th>取扱回数（体）</th>
</tr>
</thead>
<tbody>
<tr>
<td># 5 8 4</td>
<td>新燃料材選別機</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>500+Air+1</td>
<td>42日</td>
<td>48体</td>
</tr>
<tr>
<td></td>
<td>・リサイクル装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24体 28体 44体 96体</td>
</tr>
<tr>
<td></td>
<td>・激波加速器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># 5 8 6</td>
<td>地下高圧水</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>500+Air+1</td>
<td>42日</td>
<td>48体</td>
</tr>
<tr>
<td></td>
<td>・冷却器内筒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24体 28体 44体 96体</td>
</tr>
<tr>
<td></td>
<td>・水処理装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># 5 8 7</td>
<td>地下台車新燃料予熱装置</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>500+Air+1</td>
<td>42日</td>
<td>48体</td>
</tr>
<tr>
<td></td>
<td>・トガ（機能）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24体 28体 44体 96体</td>
</tr>
<tr>
<td></td>
<td>・冷却器用トガ（機能）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

実験対象体数：240体／年（1腹交 120体，2腹交／年）
D／P腹交回数：20体／年（検査中18体）
D／P腹交回数：26回／年（検査中8回，検査中18回）
<table>
<thead>
<tr>
<th>項目</th>
<th>ITEM</th>
<th>1991（平成3年）</th>
<th>1992（平成4年）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>