Refine your search:     
Report No.

Conceptual design of iodine-sulfur process flowsheet with more than 50% thermal efficiency for hydrogen production

Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.

A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of Japan Atomic Energy Agency's commercial Gas Turbine High Temperature Reactor Cogeneration (GTHTR300C) plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; flash concentration of H$$_{2}$$SO$$_{4}$$ using waste heat from Bunsen reaction, prevention of H$$_{2}$$SO$$_{4}$$ vaporization from a distillation column by introduction of H$$_{2}$$SO$$_{4}$$ solution, and I$$_{2}$$ condensation heat recovery by direct contact heat exchange in the HI distillation column. A simulation of material and heat balance showed hydrogen of about 31,900 Nm$$^{3}$$/h was produced by 170 MW heat from the GTHTR300C. A process thermal efficiency of 50.2% was achievable with incorporation of the innovative techniques and several high performance components expected in future R&D.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.