Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 48654

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermodynamic study of the complexation of humic acid by calorimetry

Kimuro, Shingo; Kirishima, Akira*; Kitatsuji, Yoshihiro; Miyakawa, Kazuya; Akiyama, Daisuke*; Sato, Nobuaki*

Journal of Chemical Thermodynamics, 132, p.352 - 362, 2019/05

A combination of potentiometry and calorimetry was used for the determination of the thermodynamic quantities of complexation of generic and groundwater humic acid (HA), which was isolated from deep groundwater at Horonobe, Hokkaido, Japan, with copper (II) ions and uranyl (VI) ions. The apparent complexation constant of Horonobe HA was independent of the pH, whereas that of generic HA was dependent on the pH. This observation indicates that the polyelectrolyte effect of Horonobe HA is negligible because of its small molecular size. In addition, the effect of the heterogeneity of Horonobe HA was not significant. Moreover, the complexation enthalpy of Horonobe HA was consistent with that of homogeneous poly(acrylic acid), which means the complexation of Horonobe HA was not affected by the functional group heterogeneity . Consequently, the characteristic complexation mechanism of Horonobe HA was revealed based on the determined thermodynamic quantities.

Journal Articles

Fukushima $$^{137}$$Cs releases dispersion modelling over the Pacific Ocean; Comparisons of models with water, sediment and biota data

Peri$'a$$~n$ez, R.*; Bezhenar, R.*; Brovchenko, I.*; Jung, K. T.*; Kamidaira, Yuki; Kim, K. O.*; Kobayashi, Takuya; Liptak, L.*; Maderich, V.*; Min, B. I.*; et al.

Journal of Environmental Radioactivity, 198, p.50 - 63, 2019/03

A number of marine radionuclide dispersion models were applied to simulate $$^{137}$$Cs releases from Fukushima Daiichi Nuclear Power Plant accident in 2011 over the northwest Pacific. Simulations extended over two years and both direct releases into the ocean and deposition of atmospheric releases on the ocean surface were considered. Dispersion models included an embedded biological uptake model (BUM). Three types of BUMs were used: equilibrium, dynamic and allometric. Model results were compared with $$^{137}$$Cs measurements in water, sediment and biota. A reasonable agreement in model/model and model/data comparisons was obtained.

Journal Articles

Study of an HTGR and renewable energy hybrid system for grid stability

Sato, Hiroyuki; Yan, X.

Nuclear Engineering and Design, 343, p.178 - 186, 2019/03

A hybrid system combining HTGR and renewable energy is investigated to compensate intermittent renewable energy power generation. A new proposal of using the inventory and bypass control devices already built in the gas turbine, is found to be effective to compensate hourly to daily variation of renewable energy. The reactor thermal power remains at constant full power while the heat output is increased or decreased subject to the need of reactor power generation. On the other hand, the massive heat capacity in the graphite core is shown to be sufficient to compensate renewable energy on a time scale of seconds to minutes and up to about 20% of the rated power output of the nuclear plant. Similarly, no additional control devices are required to perform this control operation. These findings demonstrate the technical and economic potential of the HTGR system to maintain the stability of a grid being incorporated with significant portfolios of renewable energy power generation.

Journal Articles

Hadronic Paschen-Back effect

Iwasaki, Sachio; Oka, Makoto; Suzuki, Kei*; Yoshida, Tetsuya*

Physics Letters B, 790, p.71 - 76, 2019/03

We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rate. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.

Journal Articles

Determination of $$^{107}$$Pd in Pd purified by selective precipitation from spent nuclear fuel by laser ablation ICP-MS

Asai, Shiho; Ohata, Masaki*; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical and Bioanalytical Chemistry, 411(5), p.973 - 983, 2019/02

Determination of radiopalladium $$^{107}$$Pd is required for ensuring the radiation safety of Pd extracted from spent nuclear fuel for recycling or disposal. We employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to simplify an analytical procedure of $$^{107}$$Pd. Pd was separated through selective Pd precipitation reaction from spent nuclear fuel. Laser ablation allows direct measurement of the Pd precipitates, skipping the dissolution and dilution procedure. In this study, $$^{102}$$Pd in natural Pd standard solution was used as an internal standard, taking advantage of its absence in spent nuclear fuel. The Pd precipitate was uniformly embedded on the surface of the centrifugal filter, forming a microscopically thin flat surface of Pd. The resulting homogeneous Pd layer is suitable for obtaining a stable signal ratio of $$^{107}$$Pd/$$^{102}$$Pd. The amount of $$^{107}$$Pd obtained by LA-ICP-MS corresponds to the values obtained by conventional solution nebulization measurement.

Journal Articles

3D-microstructure analysis of compacted Na- and Cs-montmorillonites with nanofocus X-ray computed tomography and correlation with macroscopic transport properties

Takahashi, Hiroaki*; Tachi, Yukio

Applied Clay Science, 168, p.211 - 222, 2019/02

Microstructural and mass transport properties of compacted Na- and Cs-montmorillonites with different swelling properties were investigated by combining 3D microstructure analysis using nanofocus X-ray CT and diffusion measurement of HDO. The X-ray CT observations indicated that macropores in the dry state of compacted Na-montmorillonite are filled with gel phases, and the grain sizes of clay particles shifted toward smaller values through the saturation and swelling processes. By contrast, no gel phase and no decrease in the grain and pore volumes were observed for saturated Cs-montmorillonite. The geometrical factors of the macropores including tortuosity and geometric constrictivity of saturated Cs-montmorillonite determined by the X-ray CT was consistent with the corresponding values derived in the HDO diffusion test. In the case of Na-montmorillonite, the larger differences between the geometric factors evaluated by the X-ray CT and the diffusion tests can be explained by the electrostatic constrictivity factor and the additional geometrical factors in gel phase and interlayer that are smaller than the detection limit of the X-ray CT.

Journal Articles

A Quasiclassical trajectory calculation to compute the reaction cross section and thermal rate constant for the cesium exchange reaction $$^{133}$$CsI + $$^{135}$$Cs $$rightarrow$$ $$^{133}$$Cs + I$$^{135}$$Cs

Kobayashi, Takanori*; Matsuoka, Leo*; Yokoyama, Keiichi

Computational and Theoretical Chemistry, 1150, p.40 - 48, 2019/02

One of important research targets in the development of cesium isotope separation system is design of recovery process of cesium atom. Relevant to this research target, the reaction cross section and reaction rate constant of a cesium exchange reaction through collision of the cesium iodide molecules with cesium atoms are calculated by a quasi-classical trajectory calculation based on a potential energy surface obtained by quantum chemistry calculations. Consequently, the rate constant is calculated to be 3.6 $$times$$ 10$$^{-10}$$ cm$$^{3}$$molecule$$^{-1}$$s$$^{-1}$$, as large as collision rate in the present condition. In addition, slightly positive temperature dependence is observed in the rate constant. This behavior is explained with the long-range attractive force and effect of subsequent dissociation process.

Journal Articles

Implementation of a gyrokinetic collision operator with an implicit time integration scheme and its computational performance

Maeyama, Shinya*; Watanabe, Tomohiko*; Idomura, Yasuhiro; Nakata, Motoki*; Nunami, Masanori*

Computer Physics Communications, 235, p.9 - 15, 2019/02

We have implemented the Sugama collision operator in the gyrokinetic Vlasov simulation code, GKV, with an implicit time-integration scheme. The new method is versatile and independent of the details of the linearized collision operator, by means of an operator splitting, an implicit time integrator, and an iterative Krylov subspace solver. Numerical tests demonstrate stable computation over the time step size restricted by the collision term. An efficient implementation for parallel computation on distributed memory systems is realized by using the data transpose communication, which makes the iterative solver free from inter-node communications during iteration. Consequently, the present approach achieves enhancement of computational efficiency and reduction of computational time to solution simultaneously, and significantly accelerates the total performance of the application.

Journal Articles

Japan-IAEA nuclear energy management school

Kono, Yuko

Nippon Genshiryoku Gakkai-Shi, 61(2), P. 150, 2019/02


Journal Articles

Studies of extremely dense matter in heavy-ion collisions at J-PARC

Sako, Hiroyuki

Nuclear Physics A, 982, p.959 - 962, 2019/02

to study extremely dense matter in heavy-ion collisions at 1-19 AGeV/c at a future project of J-PARC (JPARC-HI). We will search for the first order phase boundary and its critical end point in the QCD phase diagram. We also aim at studying the properties of dense matter related to neutron stars and neutron star mergers, in particular the equation of state (EOS). We expect to produce world's highest rate heavy-ion beams of $$10^{11}$$ with the ion species from p to U. We design spectrometers based on a large dipole magnet to measure hadrons, dimuons, and hypernuclei. We evaluate some of key performance of the spectrometers based on detailed simulations.

Journal Articles

A Telescoping view of solute architectures in a complex fluid system

Motokawa, Ryuhei; Kobayashi, Toru; Endo, Hitoshi; Mu, J.*; Williams, C. D.*; Masters, A. J.*; Antonio, M. R.*; Heller, W. T.*; Nagao, Michihiro*

ACS Central Science, 5(1), p.85 - 96, 2019/01

We present a hierarchical aggregate model of an organic phase containing a coordination species that acts as a fundamental building unit of higher-order structures formed in the organic phase. We aimed to elucidate the fundamental aspects of the microscopic structure and phase separation occurring in ionic separation and recovery systems during solvent extraction. The coordination species aggregate through a hydrogen-bonding network formed by interaction between the hydrophilic part of the coordination species with extracted water and acid molecules. This reduces the hydrophilic surface area, resulting in subsequent formation of small primal clusters of 2 to 3 nm in diameter. The primal clusters further aggregate due to van der Waals interaction to form large aggregates of $$<$$ 10 nm in diameter. The size of the primal cluster does not depend on the concentration of the coordination species, whereas the size of the large aggregate increases as the aggregation number of the primal clusters increases. We conclude that hybrid interaction is a key driving force in the formation and growth of the hierarchical aggregate and the induction of phase separation of the organic phase.

Journal Articles

Count-loss effect in determination of prompt neutron decay constant by neutron correlation methods that employ two sets of neutron counting systems

Kitamura, Yasunori*; Fukushima, Masahiro; Kitamura, Yasunori*

Annals of Nuclear Energy, 125, p.328 - 341, 2019/01

It has been taken for granted that the neutron correlation methods that employ two sets of neutron counting systems, e.g., the covariance-to-mean and the cross-correlation methods, are free from the count-loss effect for determination of the neutron decay constant. It was however found in the present study that these methods overestimate the neutron decay constant under high counting rate conditions. New formulae of these methods were hence obtained on the basis of a rigorous theoretical approach for treating the count-loss process. It is expected that the present formulae work better than conventional ones for determination of the neutron decay constant.

Journal Articles

First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 156, p.368 - 375, 2019/01

The segregation of multiple hydrogen atoms along aluminum (Al) grain boundaries (GBs) and fracture surfaces (FSs) was investigated through first-principles calculations considering the characteristics of GBs. The results indicate that hydrogen segregation is difficult along low-energy GBs. The segregation energy of multiple hydrogen atoms along GBs and FSs and the cohesive energy was obtained for three types of high-energy Al GBs. With increasing hydrogen segregation along the GBs, the cohesive energy of the GB decreases and approaches zero with no decrease in GB segregation energy. The GB cohesive energy decreases in parallel with the volume expansion of the region of low electron density along the GB.

Journal Articles

Estimation on the change of the condition of the impervious plug during groundwater recovery experiment

Matsui, Hiroya; Mikake, Shinichiro; Ikeda, Koki; Tsutsue, Jiyun

Dai-46-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.286 - 291, 2019/01

Japan Nuclear Energy Agency (JAEA) has been conducting the groundwater recovery experiment to develop a methodology to estimate the geological environment recovery after closure of the drift at GL-500m in Mizunami Underground Research Laboratory, Japan. For the experiment, an impervious concrete plug was constructed to maintain a recovered water pressure and its functions were assessed based on the monitoring results and interpretation of several kinds of measurements performed inside and outside of the plug during groundwater recovery test. This report summarized the change of the condition of the plug due to groundwater recovery estimated based on the different kinds of monitoring data.

Journal Articles

A Study on the hydro-mechanical behavior in the excavation damaged zone in shaft sinking at the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

Dai-46-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.142 - 147, 2019/01

This research presents the hydro-mechanical behavior of EDZ in shaft sinking in the Horonobe underground Research Laboratory on the basis of the results of in situ hydraulic tests, acoustic emission (AE) measurements, and hydro-mechanical coupling numerical analysis. The AE sources were distributed within 1.5 m into the shaft wall; and hydraulic conductivity in the EDZ is 2 to 4 orders of magnitudes higher than that in no fractured area. On the other hand, on the basis of the result of numerical analysis, the maximum extent of the EDZ is 1.5 m into the gallery wall. This result is almost consistent with the trend of acoustic emission measurement and hydraulic test.

Journal Articles

A Study on support design for deep shaft sinking in rock masses of low strength and anisotropic initial stress

Motoshima, Takayuki*; Koike, Masashi*; Hagihara, Takeshi*; Aoyagi, Kazuhei

Dai-46-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.208 - 213, 2019/01

The short step construction method is the standard construction method for deep shaft excavation. However, considering the shaft construction in the sedimentary rock widely distributed in Japan, the support concrete stress can become excessive especially when there are bad conditions such as low rock strength, anisotropic initial stress, or high ground pressure. In this research, we introduced the dual support design to the short step construction method in order to reduce the support stress, and confirmed the validity by three dimensional numerical analysis. Validation analysis was conducted using the in-situ data in the Horonobe Underground Research Project conducted by Japan Atomic Energy Agency.

Journal Articles

Challenge next-generation nuclear system; Development of oxide dispersion strengthened ferritic steel

Otsuka, Satoshi; Kaito, Takeji

Enerugi Rebyu, 39(1), p.44 - 46, 2019/01

For performance improvement of next-generation nuclear system such as fast reactor, it has been expected to develop advanced material resistant to severe in-reactor environment (i.e. high-dose neutron irradiation at high-temperature). Japan Atomic Energy Agency (JAEA) has been developing Oxide Dispersion Strengthened (ODS) ferritic steel for long life fuel cladding tube of fast reactor. Application of ODS ferritic steel to fast reactor fuel can extend the fuel life time twice or more as long as the fuel with conventional cladding tube (i.e. modified SUS316), thus reducing fuel exchange frequency and fuel cost. It can be adaptable to high-temperature plant operation, which is favorable for improvement of power generation efficiency. This paper interprets the development of ODS ferritic steel cladding tube for sodium-cooled fast reactor, which has been led by JAEA for dozens of years.

Journal Articles

CLADS for Fukushima Daiichi decommissioning

Okamoto, Koji

Hozengaku, 17(4), P. 1, 2019/01


Journal Articles

Determination of emission rates and spectra of neutrons from $$^{241}$$Am-Li sources

Hoshi, Katsuya; Nishino, Sho; Yoshida, Tadayoshi; Tsujimura, Norio

JPS Conference Proceedings (Internet), 24, p.011020_1 - 011020_6, 2019/01

We studied the application of AmLi interrogation neutron sources, which originally deployed in non-destructive assay apparatus for nuclear safeguard, to calibration work. To determine the emission rate, the angular distribution of neutron fluence was measured by a potable long counter. The emission rate at the date of measurement (October 23rd, 2015) was determined to be 1.00$$times$$10$$^{6}$$ n/s ($$pm$$4.1% (${it k}$ = 2)).

Journal Articles

Testing of criticality accident alarm system detectors to pulsed radiation at TRACY

Tsujimura, Norio; Yoshida, Tadayoshi; Sanada, Yukihisa

JPS Conference Proceedings (Internet), 24, p.011013_1 - 011013_6, 2019/01

The Japan Atomic Energy Agency used criticality accident alarm systems (CAAS) to monitor the occurrence of any accidental criticality at the Tokai Reprocessing Plant (TRP). A total of six plastic scintillator-based detector units, newly purchased or developed for the TRP, were tested by exposing them to pulsed radiation generated at TRACY, which is a pulse-type reactor that uses uranyl nitrate solution as fuel. All detector units tested responded properly to pulsed radiation that simulated an actual accidental criticality.

48654 (Records 1-20 displayed on this page)